scispace - formally typeset
Search or ask a question
Author

Nongkran Lumjuan

Bio: Nongkran Lumjuan is an academic researcher from Chiang Mai University. The author has contributed to research in topics: Aedes aegypti & Deltamethrin. The author has an hindex of 17, co-authored 23 publications receiving 1540 citations. Previous affiliations of Nongkran Lumjuan include Liverpool School of Tropical Medicine.

Papers
More filters
Journal ArticleDOI
TL;DR: Annotation of the recently determined genome sequence of the major dengue vector, Aedes aegypti, reveals an abundance of detoxification genes, and an array containing unique oligonucleotide probes for these genes was constructed and compared their expression level in insecticide resistant and susceptible strains.

319 citations

Journal ArticleDOI
TL;DR: Characterization of the respective recombinant enzymes revealed that both variants have comparable DDT dehydrochlorinase activity although the isoform from the resistant strain has higher affinity for the insecticide.

240 citations

01 Mar 2010
TL;DR: The lack of publicly accessible standardized data sets dcoumenting levels of insecticide resistance in many dengue endemic countries, and the absence of studies on the operational impact of resistance, preculdes a comprehensive analysis of the current global threat that insecticides resistance poses to d Dengue control.
Abstract: Background: Most national dengue control programmes rely extensively on insecticides to control the mosquito vectors of this disease. Objectives: The objective of this review is to describe current knowledge of the extent of insecticide resistance in dengue vectors and the potential impact of this resistance on control activities. Methods: We searched Web of Science and PubMed for studies that included data on resistance to the four major classes of insecticides: organochlorines, carbamates, organophosphates and pyrethroids, in the dengue vectors Aedes aegypti and Aedes albopictus. Insecticide bioassy data were extracted from the published literature and the methods used to obtain, analyse and interpret this data were critically evaluated. Emphasis was placed on the two insecticide classes most widely used in dengue control, organophosphates and pyrethroids. The use of biochemical and molecular tools for resistance monitoring was also reviewed. Results: 66 studies met our inclusion criteria and were uploaded on to a public databse (IRBase). There is a stong geographical bias in published studies with nearly half originating from three countries (Thailand, India and Brazil). Bioassay data demonstrates that resistance to the organophosphate temephos and to pyrethroids is widespread in Ae. aegypti and resistance has also been reported in Ae. albopictus. Assessing the impact of insecticide resistance on vector control is complicated by variations in the methodology used to measure and report resistance, and by the lack of studies into the epidemiological consequences of insecticicde resistance. Conclusions: The lack of publicly accessible standardized data sets dcoumenting levels of insecticide resistance in many dengue endemic countries, and the absence of studies on the operational impact of resistance, preculdes a comprehensive analysis of the current global threat that insecticide resistance poses to dengue control. However, several countries with active resistance monitoring programmes have shown that insecticide resistance is reducing our ability to control dengue vectors. This situation is likely to worsen unless effective strategies are rapidly implemented to mitigate these effects.

197 citations

Journal ArticleDOI
TL;DR: Interestingly, GSTX2-2 showed an affinity for hematin, and this, together with the restricted distribution of this class to haematophagous insects, may indicate a role for these enzymes in protecting mosquitoes against heme toxicity during blood feeding.

123 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The genomic changes that lead to amplification, overexpression, and coding sequence variation in the three major groups of genes encoding metabolic enzymes, i.e., cytochrome P450 monooxygenases (P450s), esterases, and glutathione-S-transferases (GSTs), are the focus of this review.
Abstract: Xenobiotic resistance in insects has evolved predominantly by increasing the metabolic capability of detoxificative systems and/or reducing xenobiotic target site sensitivity. In contrast to the limited range of nucleotide changes that lead to target site insensitivity, many molecular mechanisms lead to enhancements in xenobiotic metabolism. The genomic changes that lead to amplification, overexpression, and coding sequence variation in the three major groups of genes encoding metabolic enzymes, i.e., cytochrome P450 monooxygenases (P450s), esterases, and glutathione-S-transferases (GSTs), are the focus of this review. A substantial number of the adaptive genomic changes associated with insecticide resistance that have been characterized to date are transposon mediated. Several lines of evidence suggest that P450 genes involved in insecticide resistance, and perhaps insecticide detoxification genes in general, may share an evolutionary association with genes involved in allelochemical metabolism. Differences in the selective regime imposed by allelochemicals and insecticides may account for the relative importance of regulatory or structural mutations in conferring resistance.

1,642 citations

Journal ArticleDOI
TL;DR: There are some recent radiations in CYP6, CYP9 and certain CCE clades in A. mellifera that could be associated with the evolution of the hormonal and chemosensory processes underpinning its highly organized eusociality.
Abstract: The honeybee genome has substantially fewer protein coding genes (approximate to 11 000 genes) than Drosophila melanogaster (approximate to 13 500) and Anopheles gambiae (approximate to 14 000). Some of the most marked differences occur in three superfamilies encoding xenobiotic detoxifying enzymes. Specifically there are only about half as many glutathione-S-transferases (GSTs), cytochrome P450 monooxygenases (P450s) and carboxyl/cholinesterases (CCEs) in the honeybee. This includes 10-fold or greater shortfalls in the numbers of Delta and Epsilon GSTs and CYP4 P450s, members of which clades have been recurrently associated with insecticide resistance in other species. These shortfalls may contribute to the sensitivity of the honeybee to insecticides. On the other hand there are some recent radiations in CYP6, CYP9 and certain CCE clades in A. mellifera that could be associated with the evolution of the hormonal and chemosensory processes underpinning its highly organized eusociality.

653 citations

Journal ArticleDOI
Nannan Liu1
TL;DR: Current knowledge of the molecular mechanisms, genes, gene interactions, and gene regulation governing the development of insecticide resistance in mosquitoes is reviewed and the potential impact of the latest research findings on the basic and practical aspects of mosquito resistance research is discussed.
Abstract: Mosquito-borne diseases, the most well known of which is malaria, are among the leading causes of human deaths worldwide. Vector control is a very important part of the global strategy for management of mosquito-associated diseases, and insecticide application is the most important component in this effort. However, mosquito-borne diseases are now resurgent, largely because of the insecticide resistance that has developed in mosquito vectors and the drug resistance of pathogens. A large number of studies have shown that multiple, complex resistance mechanisms—in particular, increased metabolic detoxification of insecticides and decreased sensitivity of the target proteins—or genes are likely responsible for insecticide resistance. Gene overexpression and amplification, and mutations in protein-coding-gene regions, have frequently been implicated as well. However, no comprehensive understanding of the resistance mechanisms or regulation involved has yet been developed. This article reviews current knowledg...

637 citations

Journal ArticleDOI
TL;DR: Details of population genetics and structure will allow following, and possibly predicting, the geographical and temporal dynamics of its expansion, and will inform the practical operations of control programs.

485 citations

Journal ArticleDOI
TL;DR: The available evidence for the geographical distribution of insecticide resistance in Aedes aegytpi and Ae.
Abstract: Both Aedes aegytpi and Ae. albopictus are major vectors of 5 important arboviruses (namely chikungunya virus, dengue virus, Rift Valley fever virus, yellow fever virus, and Zika virus), making these mosquitoes an important factor in the worldwide burden of infectious disease. Vector control using insecticides coupled with larval source reduction is critical to control the transmission of these viruses to humans but is threatened by the emergence of insecticide resistance. Here, we review the available evidence for the geographical distribution of insecticide resistance in these 2 major vectors worldwide and map the data collated for the 4 main classes of neurotoxic insecticide (carbamates, organochlorines, organophosphates, and pyrethroids). Emerging resistance to all 4 of these insecticide classes has been detected in the Americas, Africa, and Asia. Target-site mutations and increased insecticide detoxification have both been linked to resistance in Ae. aegypti and Ae. albopictus but more work is required to further elucidate metabolic mechanisms and develop robust diagnostic assays. Geographical distributions are provided for the mechanisms that have been shown to be important to date. Estimating insecticide resistance in unsampled locations is hampered by a lack of standardisation in the diagnostic tools used and by a lack of data in a number of regions for both resistance phenotypes and genotypes. The need for increased sampling using standard methods is critical to tackle the issue of emerging insecticide resistance threatening human health. Specifically, diagnostic doses and well-characterised susceptible strains are needed for the full range of insecticides used to control Ae. aegypti and Ae. albopictus to standardise measurement of the resistant phenotype, and calibrated diagnostic assays are needed for the major mechanisms of resistance.

477 citations