scispace - formally typeset
Search or ask a question
Author

Nora Graf

Bio: Nora Graf is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Cisplatin & Cancer cell. The author has an hindex of 6, co-authored 6 publications receiving 846 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This review provides an overview of metal-based anticancer drugs and drug candidates, focusing on metal complexes that can be activated in the reducing environment of cancer cells, thus serving as prodrugs.

430 citations

Journal ArticleDOI
14 May 2012-ACS Nano
TL;DR: The RGD-targeted PLGA-PEG NPs were more efficacious and better tolerated by comparison to cisplatin in an orthotopic human breast cancer xenograft model in vivo, and encouraged us also to evaluate the anticancer effect of the new construct in an animal model.
Abstract: Targeted delivery of therapeutics to tumor neovasculature is potentially a powerful approach for selective cancer treatment. Integrins are heterodimeric transmembrane proteins involved in cell adhesion and cell signaling, and their expression is commonly upregulated in cancers and inflammatory diseases. The αvβ3 integrin is differentially upregulated on angiogenic endothelial cells as well as on many cancer cells. Here we demonstrate the differential targeting of cisplatin prodrug-encapsulated poly(d,l-lactic-co-glycolic acid)-block-polyethylene glycol (PLGA-PEG) nanoparticles (NPs) to the αvβ3 integrin on cancer cells using the cyclic pentapeptide c(RGDfK). Cisplatin is one of the most widely used anticancer drugs, and approaches that can improve its therapeutic index are of broad importance. The RGD-targeted Pt(IV)-encapsulated NPs displayed enhanced cytotoxicity as compared to cisplatin administered in its conventional dosage form in model prostate and breast cancer epithelial cells in vitro. Cytotoxic...

284 citations

Journal ArticleDOI
TL;DR: In this paper, a 1:1 Pt-CTX conjugate was characterized by mass spectrometry and gel electrophoresis, and the cytotoxicity was lower in cell culture than that of cisplatin but greater than those of its Pt(IV) precursor and CTX in several cancer cell lines.

105 citations

Journal ArticleDOI
TL;DR: Investigation of possible consequences of down‐regulation of XPF and XPG gene expression in osteosarcoma cancer cells (U2OS) and the impact on cellular transcription and DNA repair and the sensitivity of such cells toward the platinum anticancer drugs cisplatin and oxaliplatin.
Abstract: Resistance of tumor cells to platinum anticancer agents poses a major problem in cancer chemotherapy. One of the mechanisms associated with platinum-based drug resistance is the enhanced capacity of the cell to carry out nucleotide excision repair (NER) on platinum-damaged DNA. Endonucleases XPF and XPG are critical components of NER, responsible for excising the damaged DNA strand to remove the DNA lesion. Here, we investigated possible consequences of down-regulation of XPF and XPG gene expression in osteosarcoma cancer cells (U2OS) and the impact on cellular transcription and DNA repair. We further evaluated the sensitivity of such cells toward the platinum anticancer drugs cisplatin and oxaliplatin.

48 citations

01 Mar 2011
TL;DR: In this paper, the authors investigated possible consequences of down-regulation of XPF and XPG gene expression in osteosarcoma cancer cells (U2OS) and the impact on cellular transcription and DNA repair.
Abstract: Resistance of tumor cells to platinum anticancer agents poses a major problem in cancer chemotherapy. One of the mechanisms associated with platinum-based drug resistance is the enhanced capacity of the cell to carry out nucleotide excision repair (NER) on platinum-damaged DNA. Endonucleases XPF and XPG are critical components of NER, responsible for excising the damaged DNA strand to remove the DNA lesion. Here, we investigated possible consequences of down-regulation of XPF and XPG gene expression in osteosarcoma cancer cells (U2OS) and the impact on cellular transcription and DNA repair. We further evaluated the sensitivity of such cells toward the platinum anticancer drugs cisplatin and oxaliplatin.

38 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: The fundamental concepts of enhanced permeability and retention effect (EPR) are revisited and the mechanisms proposed to enhance preferential "retention" in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages are explored.

2,199 citations

Journal ArticleDOI
TL;DR: Recently, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs as mentioned in this paper.
Abstract: The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclea...

1,682 citations

Journal ArticleDOI
TL;DR: This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Abstract: New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive “smart” MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.

1,072 citations