scispace - formally typeset
Search or ask a question
Author

Norbahiah Misran

Other affiliations: Queen's University Belfast
Bio: Norbahiah Misran is an academic researcher from National University of Malaysia. The author has contributed to research in topics: Microstrip antenna & Patch antenna. The author has an hindex of 37, co-authored 360 publications receiving 4658 citations. Previous affiliations of Norbahiah Misran include Queen's University Belfast.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a compact microstrip line-fed ultrawideband (UWB) tapered-shape slot antenna is presented, which is fabricated onto an inexpensive FR4 substrate with an overall dimension of 22 × 24 mm2.
Abstract: A compact microstrip line-fed ultrawideband (UWB) tapered-shape slot antenna is presented. The proposed antenna comprises a tapered-shape slot and rectangular tuning stub. The antenna is fabricated onto an inexpensive FR4 substrate with an overall dimension of 22 × 24 mm2. The experiment shows that the proposed antenna achieves good impedance matching constant gain, stable radiation patterns over an operating bandwidth of 3-11.2 GHz (115.5%) that covers the entire UWB. The nearly stable radiation pattern with a maximum gain of 5.4 dBi makes the proposed antenna suitable for being used in UWB communication applications.

239 citations

Journal ArticleDOI
TL;DR: In this article, a broadband inverted E-H shaped microstrip patch antenna is proposed and experimentally investigated for electromagnetic analysis including the impedance bandwidth, radiation pattern, and antenna gain.
Abstract: A broadband inverted E-H shaped microstrip patch antenna is proposed and experimentally investigated. The antenna employs novel E-H shaped patch with L-probe feed technique. Prototype of the proposed antenna has been fabricated and measured for electromagnetic analysis including the impedance bandwidth, radiation pattern, and antenna gain. The designed antenna has a dimension of 80mm by 50mm, leading to broad bandwidths covering 1.76GHz to 2.38GHz. Stable radiation patterns across the operating bandwidth are observed. In addition, a parametric study is conducted to facilitate the design and optimization process.

129 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a compact wideband dual-frequency microstrip antenna with an ofiset microstrip-fed line and a strip close to the radiating edges in the circular slot patch.
Abstract: A compact wideband dual-frequency microstrip antenna is proposed in this paper. By employing an ofiset microstrip-fed line and a strip close to the radiating edges in the circular slot patch, an antenna operating at dual frequency with the impedance bandwidth of 26.2% and 22.2% respectively is presented. By attaching a strip to the radiating edges opposite to the microstrip-fed line, this alters the current distribution and radiation on the antenna at the second resonant frequency. The second frequency is also tunable by varying the lengths of the microstrip-fed line. It is demonstrated that the proposed antenna covers the widebands of UHF and microwave for RFID application. A good agreement is obtained between the simulated and experimental results.

107 citations

Journal ArticleDOI
TL;DR: The aim of this research is to develop a smart waste management system using LoRa communication protocol and TensorFlow based deep learning model to perform real time object detection and classification and allow for better waste management.
Abstract: Traditional waste management system operates based on daily schedule which is highly inefficient and costly. The existing recycle bin has also proved its ineffectiveness in the public as people do not recycle their waste properly. With the development of Internet of Things (IoT) and Artificial Intelligence (AI), the traditional waste management system can be replaced with smart sensors embedded into the system to perform real time monitoring and allow for better waste management. The aim of this research is to develop a smart waste management system using LoRa communication protocol and TensorFlow based deep learning model. LoRa sends the sensor data and Tensorflow performs real time object detection and classification. The bin consists of several compartments to segregate the waste including metal, plastic, paper, and general waste compartment which are controlled by the servo motors. Object detection and waste classification is done in TensorFlow framework with pre-trained object detection model. This object detection model is trained with images of waste to generate a frozen inference graph used for object detection which is done through a camera connected to the Raspberry Pi 3 Model B+ as the main processing unit. Ultrasonic sensor is embedded into each waste compartment to monitor the filling level of the waste. GPS module is integrated to monitor the location and real time of the bin. LoRa communication protocol is used to transmit data about the location, real time and filling level of the bin. RFID module is embedded for the purpose of waste management personnel identification.

106 citations


Cited by
More filters
Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Dissertation
04 Nov 2008
TL;DR: In this paper, the authors propose a solution to solve the problem of the problem: this paper ] of the "missing link" problem, i.i.p.II.
Abstract: II

655 citations

ReportDOI
08 Dec 1998
TL;DR: In this article, the authors consider the unique features of UWB technology and propose that the FCC should consider them in considering changes to Part 15 and take into account their unique features for radar and communications uses.
Abstract: In general, Micropower Impulse Radar (MIR) depends on Ultra-Wideband (UWB) transmission systems. UWB technology can supply innovative new systems and products that have an obvious value for radar and communications uses. Important applications include bridge-deck inspection systems, ground penetrating radar, mine detection, and precise distance resolution for such things as liquid level measurement. Most of these UWB inspection and measurement methods have some unique qualities, which need to be pursued. Therefore, in considering changes to Part 15 the FCC needs to take into account the unique features of UWB technology. MIR is applicable to two general types of UWB systems: radar systems and communications systems. Currently LLNL and its licensees are focusing on radar or radar type systems. LLNL is evaluating MIR for specialized communication systems. MIR is a relatively low power technology. Therefore, MIR systems seem to have a low potential for causing harmful interference to other users of the spectrum since the transmitted signal is spread over a wide bandwidth, which results in a relatively low spectral power density.

644 citations

Journal ArticleDOI
TL;DR: Experimental and numerical results show that the radiation characteristics, impedance matching, and SAR values of the proposed design are significantly improved compared to conventional monopole and dipole antennas, which makes it a good candidate for the wearable telemedicine application.
Abstract: We present a flexible, compact antenna system intended for telemedicine applications. The design is based on an M-shaped printed monopole antenna operating in the Industrial, Scientific, and Medical (ISM) 2.45 GHz band integrated with a miniaturized slotted Jerusalem Cross (JC) Artificial Magnetic Conductor (AMC) ground plane. The AMC ground plane is utilized to isolate the user's body from undesired electromagnetic radiation in addition to minimizing the antenna's impedance mismatch caused by the proximity to human tissues. Specific Absorption Rate (SAR) is analyzed using a numerical human body model (HUGO) to assess the feasibility of the proposed design. The antenna expresses 18% impedance bandwidth; moreover, the inclusion of the AMC ground plane increases the front to back ratio by 8 dB, provides 3.7 dB increase in gain, in addition to 64% reduction in SAR. Experimental and numerical results show that the radiation characteristics, impedance matching, and SAR values of the proposed design are significantly improved compared to conventional monopole and dipole antennas. Furthermore, it offers a compact and flexible solution which makes it a good candidate for the wearable telemedicine application.

349 citations