scispace - formally typeset
Search or ask a question
Author

Norio Sakai

Bio: Norio Sakai is an academic researcher from Osaka University. The author has contributed to research in topics: Medicine & Catalysis. The author has an hindex of 38, co-authored 316 publications receiving 5455 citations. Previous affiliations of Norio Sakai include Yale University & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that chronic antidepressant treatment induces CRE-mediated gene expression in a neuroanatomically differentiated pattern and further elucidate the molecular mechanisms underlying the actions of these widely used therapeutic agents.
Abstract: Regulation of gene transcription via the cAMP-mediated second messenger pathway has been implicated in the actions of antidepressant drugs, but studies to date have not demonstrated such an effect in vivo To directly study the regulation of cAMP response element (CRE)-mediated gene transcription by antidepressants, transgenic mice with a CRE-LacZ reporter gene construct were administered one of three different classes of antidepressants: a norepinephrine selective reuptake inhibitor (desipramine), a serotonin selective reuptake inhibitor (fluoxetine), or a monoamine oxidase inhibitor (tranylcypromine) Chronic, but not acute, administration of these antidepressants significantly increased CRE-mediated gene transcription, as well as the phosphorylation of CRE binding protein (CREB), in several limbic brain regions thought to mediate the action of antidepressants, including the cerebral cortex, hippocampus, amygdala, and hypothalamus These results demonstrate that chronic antidepressant treatment induces CRE-mediated gene expression in a neuroanatomically differentiated pattern and further elucidate the molecular mechanisms underlying the actions of these widely used therapeutic agents

509 citations

Journal ArticleDOI
TL;DR: The various lines of transgenic mice demonstrate an inducible system that generates high levels of transgene expression in specific brain regions and represent novel and powerful tools with which to study the functioning of these (or potentially any other) genes in the brain.
Abstract: Several inducible gene expression systems have been developed in vitro in recent years to overcome limitations with traditional transgenic mice. One of these, the tetracycline-regulated system, has been used successfully in vivo. Nevertheless, concerns remain about the ability of this system to direct high levels of transgene expression in vivo and to enable such expression to be turned on and off effectively. We report here the generation, using a modified tetracycline-regulated system under the control of the neuron-specific enolase promoter, of several lines of mice that direct transgene expression to specific brain regions, including the striatum, cerebellum, CA1 region of the hippocampus, or deep layers of cerebral neocortex. Transgene expression in these mice can be turned off completely with low doses of doxycycline (a tetracycline derivative) and driven to very high levels in the absence of doxycycline. We demonstrate this tissue-specific, inducible expression for three transgenes: those that encode luciferase (a reporter protein) or DeltaFosB or the cAMP-response element binding protein (CREB) (two transcription factors). The various lines of transgenic mice demonstrate an inducible system that generates high levels of transgene expression in specific brain regions and represent novel and powerful tools with which to study the functioning of these (or potentially any other) genes in the brain.

190 citations

Journal ArticleDOI
TL;DR: It is concluded that the cDNA isolated from a murine testis cDNA library represents a minor species generated by an alternate poly(A) signal and that most of the mRNA has a much longer 3′‐untranslated region.
Abstract: The cDNA for a murine galactocerebrosidase was isolated from a murine testis cDNA library on the basis of its homology with the cDNA for human galactocerebrosidase and a PCR method was used to clone the 5′ end. It has a 2,278-nucleotide sequence including a 2,004-nucleotide open reading frame, which encodes 668 amino acid residues. The identity between the human and murine amino acid sequences was very high, being calculated to be 84%. Sequencing of cDNA from liver of the twitcher mouse revealed a nonsense mutation at codon 339 (TGG TGA). The most abundant mRNA of the murine galactocerebrosidase gave a 3.6-kb band, which was not detected in twitcher mice. This suggests that the cDNA (2,278 bp) we characterized represents a minor species generated by an alternate poly(A) signal and that most of the mRNA has a much longer 3′-untranslated region. Genome analysis revealed that this mutation was homozygous in the twitcher and heterozygous in the carrier but was not present in normal mice. The normal mouse cDNA but not the mutant cDNA of the galactocerebrosidase transfected into COS1 cells gave rise to an increase in enzymatic activity. We concluded that this mutation results in the deficiency of galactocerebrosidase in the twitcher mouse.

186 citations

Journal ArticleDOI
TL;DR: This indium catalytic system successfully accommodated the intramolecular cyclization of other arylalkyne skeletons involving a carboxylic acid and an amide group.
Abstract: Use of a 2-ethynylaniline having an alkyl or aryl group on the terminal alkyne selectively produced a variety of polyfunctionalized indole derivatives in moderate to excellent yields via indium-catalyzed intramolecular cyclization of the corresponding alkynylaniline. In contrast, employment of a substrate with a trimethylsilyl group or with no substituent group on the terminal triple bond, exclusively afforded polysubstituted quinoline derivatives in good yields via indium-promoted intermolecular dimerization of the ethynylaniline. This indium catalytic system successfully accommodated the intramolecular cyclization of other arylalkyne skeletons involving a carboxylic acid and an amide group.

179 citations

Journal ArticleDOI
TL;DR: This study describes a novel one-pot procedure for a directly reductive conversion of the carbonyl function of esters to the corresponding ethers by Et3SiH in the presence of a catalytic amount of InBr3.
Abstract: This study describes a novel one-pot procedure for a directly reductive conversion of the carbonyl function of esters to the corresponding ethers by Et3SiH in the presence of a catalytic amount of InBr3.

132 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
Abstract: Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.

10,233 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres.
Abstract: Anisotropic water diffusion in neural fibres such as nerve, white matter in spinal cord, or white matter in brain forms the basis for the utilization of diffusion tensor imaging (DTI) to track fibre pathways. The fact that water diffusion is sensitive to the underlying tissue microstructure provides a unique method of assessing the orientation and integrity of these neural fibres, which may be useful in assessing a number of neurological disorders. The purpose of this review is to characterize the relationship of nuclear magnetic resonance measurements of water diffusion and its anisotropy (i.e. directional dependence) with the underlying microstructure of neural fibres. The emphasis of the review will be on model neurological systems both in vitro and in vivo. A systematic discussion of the possible sources of anisotropy and their evaluation will be presented followed by an overview of various studies of restricted diffusion and compartmentation as they relate to anisotropy. Pertinent pathological models, developmental studies and theoretical analyses provide further insight into the basis of anisotropic diffusion and its potential utility in the nervous system.

4,216 citations

Journal ArticleDOI
TL;DR: Investigation of the effect of antidepressants on hippocampal neurogenesis in the adult rat using the thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells demonstrates that chronic antidepressant treatment significantly increases the number of BrdU-labeled cells in the dentate gyrus and hilus of the hippocampus.
Abstract: Recent studies suggest that stress-induced atrophy and loss of hippocampal neurons may contribute to the pathophysiology of depression. The aim of this study was to investigate the effect of antidepressants on hippocampal neurogenesis in the adult rat, using the thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells. Our studies demonstrate that chronic antidepressant treatment significantly increases the number of BrdU-labeled cells in the dentate gyrus and hilus of the hippocampus. Administration of several different classes of antidepressant, but not non-antidepressant, agents was found to increase BrdU-labeled cell number, indicating that this is a common and selective action of antidepressants. In addition, upregulation of the number of BrdU-labeled cells is observed after chronic, but not acute, treatment, consistent with the time course for the therapeutic action of antidepressants. Additional studies demonstrated that antidepressant treatment increases the proliferation of hippocampal cells and that these new cells mature and become neurons, as determined by triple labeling for BrdU and neuronal- or glial-specific markers. These findings raise the possibility that increased cell proliferation and increased neuronal number may be a mechanism by which antidepressant treatment overcomes the stress-induced atrophy and loss of hippocampal neurons and may contribute to the therapeutic actions of antidepressant treatment.

3,053 citations

Journal ArticleDOI
28 Mar 2002-Neuron
TL;DR: A neurobiologic understanding of depression also requires identification of the genes that make individuals vulnerable or resistant to the syndrome, and advances will fundamentally improve the treatment and prevention of depression.

2,768 citations

Journal ArticleDOI
TL;DR: The use of magnetic resonance diffusion tensor imaging to quantify the effect of dysmyelination on water directional diffusivities in brains of shiverer mice in vivo suggests that changes in lambda(perpendicular) and lambda(parallel) may potentially be used to differentiate myelin loss versus axonal injury.

2,470 citations