scispace - formally typeset
Search or ask a question
Author

Norman A. Luechinger

Bio: Norman A. Luechinger is an academic researcher from ETH Zurich. The author has contributed to research in topics: Perovskite (structure) & Nanoparticle. The author has an hindex of 20, co-authored 33 publications receiving 2002 citations.

Papers
More filters
Journal ArticleDOI
01 Dec 2017-Science
TL;DR: Tantalum-doped tungsten oxide forms almost ohmic contacts with inexpensive conjugated polymer multilayers to create a hole-transporting material with a small interface barrier, which eliminates the use of ionic dopants that compromise device stability.
Abstract: A major bottleneck delaying the further commercialization of thin-film solar cells based on hybrid organohalide lead perovskites is interface loss in state-of-the-art devices. We present a generic interface architecture that combines solution-processed, reliable, and cost-efficient hole-transporting materials without compromising efficiency, stability, or scalability of perovskite solar cells. Tantalum-doped tungsten oxide (Ta-WO x )/conjugated polymer multilayers offer a surprisingly small interface barrier and form quasi-ohmic contacts universally with various scalable conjugated polymers. In a simple device with regular planar architecture and a self-assembled monolayer, Ta-WO x –doped interface–based perovskite solar cells achieve maximum efficiencies of 21.2% and offer more than 1000 hours of light stability. By eliminating additional ionic dopants, these findings open up the entire class of organics as scalable hole-transporting materials for perovskite solar cells.

524 citations

Journal ArticleDOI
06 Feb 2009-Small
TL;DR: Since metals have a far higher saturation magnetization and higher density than oxides, the resulting increased force/volume ratio afforded significantly stronger magnetic actuators with high mechanical stability, elasticity, and shape memory effect.
Abstract: The combination of force and flexibility is at the core of biomechanics and enables virtually all body movements in living organisms. In sharp contrast, presently used machines are based on rigid, linear (cylinders) or circular (rotator in an electrical engine) geometries. As a potential bioinspired alternative, magnetic elastomers can be realized through dispersion of micro- or nanoparticles in polymer matrices and have attracted significant interest as soft actuators in artificial organs, implants, and devices for controlled drug delivery. At present, magnetic particle loss and limited actuator strength have restricted the use of such materials to niche applications. We describe the direct incorporation of metal nanoparticles into the backbone of a hydrogel and application as an ultra-flexible, yet strong magnetic actuator. Covalent bonding of the particles prevents metal loss or leaching. Since metals have a far higher saturation magnetization and higher density than oxides, the resulting increased force/volume ratio afforded significantly stronger magnetic actuators with high mechanical stability, elasticity, and shape memory effect.

276 citations

Journal ArticleDOI
TL;DR: The high stability of graphene-coated copper nanoparticles makes them economically a most attractive alternative to silver or gold nanocolloids, and will strongly facilitate the industrial use of metal nanOColloids in consumer goods.
Abstract: Metallic copper nanoparticles were synthesized by a bottom-up approach, and in situ coated with protective shells of graphene in order to get a metal nanopowder of high air stability and chemical inertness. Using an amphiphilic surfactant, a water-based copper nanocolloid could be prepared and successfully printed onto a polymer substrate by conventional ink-jet printing using household printers. The dried printed patterns exhibited strong metallic gloss and an electrical conductivity of >1 S cm−1 without the need for a sintering or densification step. This conductivity currently limits use in electronics to low current application or shielding and decorative effects. The high stability of graphene-coated copper nanoparticles makes them economically a most attractive alternative to silver or gold nanocolloids, and will strongly facilitate the industrial use of metal nanocolloids in consumer goods.

272 citations

Journal ArticleDOI
TL;DR: A scalable, hysteresis-free and planar architecture perovskite solar cell is presented, employing a flame spray synthesized low-temperature processed NiO (LT-NiO) as hole-transporting layer yielding efficiencies close to 18%.
Abstract: UNLABELLED A scalable, hysteresis-free and planar architecture perovskite solar cell is presented, employing a flame spray synthesized low-temperature processed NiO (LT-NiO) as hole-transporting layer yielding efficiencies close to 18%. Importantly, it is found that LT-NiO boosts the limits of open-circuit voltages toward an impressive non-radiative voltage loss of 0.226 V only, whereas PEDOT PSS suffers from significant large non-radiative recombination losses.

185 citations

Journal ArticleDOI
06 Feb 2007-Langmuir
TL;DR: Porous metal films for optical humidity sensing were prepared from copper nanoparticles protected by a 2-3 nm carbon coating, a silicon tenside, and a polymeric wetting agent, showing exceptional sensitivity with optical shifts in the visible light range of up to 50 nm for a change of 1% in relative humidity.
Abstract: Porous metal films for optical humidity sensing were prepared from copper nanoparticles protected by a 2-3 nm carbon coating, a silicon tenside, and a polymeric wetting agent. Exposure to water or solvent vapor revealed an exceptional sensitivity with optical shifts in the visible light range of up to 50 nm for a change of 1% in relative humidity. These properties could be attributed to a combination of surface plasmon resonance effects at low humidity and thin film interference at higher water or solvent concentration in the surrounding air. The simple concept and use of ultra-low-cost materials suggests application of such porous metal-film-based optical humidity sensors in large-scale applications for food handling, storage, and transport.

113 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: The status of graphene research is presented, which includes aspects related to synthesis, characterization, structure, and properties.
Abstract: Every few years, a new material with unique properties emerges and fascinates the scientific community, typical recent examples being high-temperature superconductors and carbon nanotubes. Graphene is the latest sensation with unusual properties, such as half-integer quantum Hall effect and ballistic electron transport. This two-dimensional material which is the parent of all graphitic carbon forms is strictly expected to comprise a single layer, but there is considerable interest in investigating two-layer and few-layer graphenes as well. Synthesis and characterization of graphenes pose challenges, but there has been considerable progress in the last year or so. Herein, we present the status of graphene research which includes aspects related to synthesis, characterization, structure, and properties.

3,513 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
22 Mar 2010-Small
TL;DR: Techniques for preparing such advanced materials via stable graphene oxide, highly reduced grapheneoxide, and graphene dispersions in aqueous and organic media are summarized with a forward outlook on their applications.
Abstract: Isolated graphene, a nanometer-thick two-dimensional analog of fullerenes and carbon nanotubes, has recently sparked great excitement in the scientific community given its excellent mechanical and electronic properties. Particularly attractive is the availability of bulk quantities of graphene as both colloidal dispersions and powders, which enables the facile fabrication of many carbon-based materials. The fact that such large amounts of graphene are most easily produced via the reduction of graphene oxide--oxygenated graphene sheets covered with epoxy, hydroxyl, and carboxyl groups--offers tremendous opportunities for access to functionalized graphene-based materials. Both graphene oxide and graphene can be processed into a wide variety of novel materials with distinctly different morphological features, where the carbonaceous nanosheets can serve as either the sole component, as in papers and thin films, or as fillers in polymer and/or inorganic nanocomposites. This Review summarizes techniques for preparing such advanced materials via stable graphene oxide, highly reduced graphene oxide, and graphene dispersions in aqueous and organic media. The excellent mechanical and electronic properties of the resulting materials are highlighted with a forward outlook on their applications.

2,397 citations