scispace - formally typeset
Search or ask a question
Author

Norman R. Heckenberg

Bio: Norman R. Heckenberg is an academic researcher from University of Queensland. The author has contributed to research in topics: Optical tweezers & Angular momentum. The author has an hindex of 50, co-authored 254 publications receiving 11404 citations. Previous affiliations of Norman R. Heckenberg include Chalmers University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Black or reflective particles can be trapped in the dark central minimum of a doughnut laser beam produced using a high efficiency computer generated hologram to carry angular momentum transferred from the central phase singularity beam.
Abstract: Black or reflective particles can be trapped in the dark central minimum of a doughnut laser beam produced using a high efficiency computer generated hologram. Such beams carry angular momentum due to the helical wave-front structure associated with the central phase singularity even when linearly polarized. Trapped absorptive particles spin due to absorption of this angular momentum transferred from the singularity beam. The direction of spin can be reversed by changing the sign of the singularity.

1,431 citations

Journal ArticleDOI
TL;DR: Laser beams that contain phase singularities can be generated with computer-generated holograms, which in the simplest case have the form of spiral Fresnel zone plates.
Abstract: Laser beams that contain phase singularities can be generated with computer-generated holograms, which in the simplest case have the form of spiral Fresnel zone plates.

1,251 citations

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: In this article, an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers, which can be held in three-dimensional optical traps at very high power without heating.
Abstract: Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams1 or beams with helical phase structure2,3. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 19364, when he reported a tiny torque developed in a quartz ‘wave-plate’ owing to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers5. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating, leading to rotation rates of over 350 Hz.

913 citations

Journal ArticleDOI
TL;DR: In this article, the properties of light beams carrying phase singularities, or optical vortices, were studied both in theory and experiment, and the general rule for angular-momentum density distribution in a combined beam was established.
Abstract: We analyze the properties of light beams carrying phase singularities, or optical vortices. The transformations of topological charge during free-space propagation of a light wave, which is a combination of a Gaussian beam and a multiple charged optical vortex within a Gaussian envelope, are studied both in theory and experiment. We revise the existing knowledge about topological charge conservation, and demonstrate possible scenarios where additional vortices appear or annihilate during free propagation of such a combined beam. Coaxial interference of optical vortices is also analyzed, and the general rule for angular-momentum density distribution in a combined beam is established. We show that, in spite of any variation in the number of vortices in a combined beam, the total angular momentum is constant during the propagation.

491 citations

Journal ArticleDOI
TL;DR: Bringing together 44 landmark papers, "Optical Angular Momentum" offers the first comprehensive overview of the subject as it has developed and gives a definitive statement of the current status of all aspects of optical angular momentum.
Abstract: Spin angular momentum of photons and the associated polarization of light has been known for many years. However, it is only over the last decade or so that physically realizable laboratory light beams have been used to study the orbital angular momentum of light. In many respects, orbital and spin angular momentum behave in a similar manner, but they differ significantly in others. In particular, orbital angular momentum offers exciting new possibilities with respect to the optical manipulation of matter and to the study of the entanglement of photons.Bringing together 44 landmark papers, "Optical Angular Momentum" offers the first comprehensive overview of the subject as it has developed. It chronicles the first decade of this important subject and gives a definitive statement of the current status of all aspects of optical angular momentum. In each chapter, the editors include a concise introduction, putting the selected papers into context and outlining the key articles a

489 citations


Cited by
More filters
Journal ArticleDOI
21 Oct 2011-Science
TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Abstract: Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

6,763 citations

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: This research presents the next generation of single-beam optical traps, which promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics and even become consumer products.
Abstract: Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.

4,647 citations

Book
01 Jan 2006
TL;DR: In this paper, the authors proposed a method for propagating and focusing of optical fields in a nano-optics environment using near-field optical probes and probe-sample distance control.
Abstract: 1. Introduction 2. Theoretical foundations 3. Propagation and focusing of optical fields 4. Spatial resolution and position accuracy 5. Nanoscale optical microscopy 6. Near-field optical probes 7. Probe-sample distance control 8. Light emission and optical interaction in nanoscale environments 9. Quantum emitters 10. Dipole emission near planar interfaces 11. Photonic crystals and resonators 12. Surface plasmons 13. Forces in confined fields 14. Fluctuation-induced phenomena 15. Theoretical methods in nano-optics Appendices Index.

3,772 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
19 Jul 2001-Nature
TL;DR: This work demonstrates entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum, which provides a practical route to entangled states that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography.
Abstract: Entangled quantum states are not separable, regardless of the spatial separation of their components This is a manifestation of an aspect of quantum mechanics known as quantum non-locality An important consequence of this is that the measurement of the state of one particle in a two-particle entangled state defines the state of the second particle instantaneously, whereas neither particle possesses its own well-defined state before the measurement Experimental realizations of entanglement have hitherto been restricted to two-state quantum systems, involving, for example, the two orthogonal polarization states of photons Here we demonstrate entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum As these modes can be used to define an infinitely dimensional discrete Hilbert space, this approach provides a practical route to entanglement that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography

2,811 citations