scispace - formally typeset
Search or ask a question
Author

Norman S. Kopeika

Bio: Norman S. Kopeika is an academic researcher from Ben-Gurion University of the Negev. The author has contributed to research in topics: Image restoration & Optical transfer function. The author has an hindex of 36, co-authored 371 publications receiving 5221 citations. Previous affiliations of Norman S. Kopeika include Ariel University & University of Pennsylvania.


Papers
More filters
Journal ArticleDOI
TL;DR: From this research it is clear that even low-amplitude vibration of the satellite-pointing systems dramatically decreases network performance.
Abstract: Free-space optical communication between satellites in a distributed network can permit high data rates of communication between different places on Earth. To establish optical communication between any two satellites requires that the line of sight of their optics be aligned during the entire communication time. Because of the large distance between the satellites and the alignment accuracy required, the pointing from one satellite to another is complicated because of vibrations of the pointing system caused by two fundamental stochastic mechanisms: tracking noise created by the electro-optic tracker and vibrations derived from mechanical components. Vibration of the transmitter beam in the receiver plane causes a decrease in the received optical power. Vibrations of the receiver telescope relative to the received beam decrease the heterodyne mixing efficiency. These two factors increase the bit-error rate of a coherent detection network. We derive simple mathematical models of the network bit-error rate versus the system parameters and the transmitter and receiver vibration statistics. An example of a practical optical heterodyne free-space satellite optical communication network is presented. From this research it is clear that even low-amplitude vibration of the satellite-pointing systems dramatically decreases network performance.

27 citations

Journal ArticleDOI
TL;DR: In this article, the authors used meteorological dependences of both C2n (where Cn is the refractive index structure coefficient) and the coarse aerosol size distribution to predict the turbulence MTF, aerosol MTF and overall atmospheric modulation transfer function according to the weather.
Abstract: The overall atmospheric modulation transfer function (MTF) is essentially the product of the turbulence and aerosol MTFs. Models describing meteorological dependences of both C2n (where Cn is the refractive index structure coefficient) and the coarse aerosol size distribution have been developed previously. Here, they are used to predict the turbulence MTF, aerosol MTF, and overall atmospheric MTF according to the weather. Comparison of predictions with measurements yields very low mean squared normalized error and suggests that such prediction models can also be very useful in image restoration based on weather data at the time and general location in which the image was recorded. An interesting aspect of this work is that measurements of the aerosol MTF with different imaging instrumentation are very different, as expected from theory developed previously concerning the practical aerosol MTF actually recorded in the image. This is dependent on instrumentation parameters. This experimental verification with two different imaging systems supports the model that the "practical" aerosol MTF is very dependent on instrumentation.

26 citations

Journal ArticleDOI
TL;DR: It is demonstrated that in the case of image sequences distorted by vibration, the images should be selected prior to processing and found empirical selection criteria and proposed a selection procedure.
Abstract: In many applications such as in airborne and terrestrial reconnaissance, robotics, medical imaging, and machine vision systems, the images of a video sequence are severely distorted by vibrations. Superresolution algorithms are suitable for restoring an image from a lowfrequency vibrated sequence because of high correlation between the frames and inherent interframe motion. However, we show that superresolution algorithms, which were developed for general types of blur, should be adapted to the specific characteristics of low-frequency vibration blur. We demonstrate that in the case of image sequences distorted by vibration, the images should be selected prior to processing. We find empirical selection criteria and propose a selection procedure.

26 citations

Journal ArticleDOI
TL;DR: A bit error probability (BEP) model that takes into account both pointing vibrations and turbulence-induced log amplitude fluctuations and indicates that BLISL can achieve a BEP of 10 � 9 and data rate of 1Gbps with normalized pointing vibration and turbulence coherence diameter d0.
Abstract: SUMMARY In this paper, we analyse the effects of vibrations and the atmosphere on the performance of a broadband laser inter-satellite link (BLISL) which was studied within the framework of the BLISL joint Israeli– German applied research project. The use of optical radiation as a carrier between satellites and in satelliteto-ground links enables transmission using very narrow beam divergence angles. Due to the narrow beam divergence angle and the large distance between the satellite and the ground station or airplane the pointing is a complicated process. Further complication results from vibration of the pointing system caused by two fundamental mechanisms of a stochastic nature: (1) tracking noise created by the electro-optic tracker and (2) vibrations caused by internal satellite mechanical mechanisms. Additionally an inhomogeneity in the temperature and pressure of the atmosphere leads to variations of the refractive index along the transmission path. These variations of refractive index as well as pointing vibrations can cause fluctuations in the intensity and the phase of the received signal leading to an increase in link error probability. In this paper, we develop a bit error probability (BEP) model that takes into account both pointing vibrations and turbulence-induced log amplitude fluctuations (i.e. signal intensity fading) in a regime in which the receiver aperture D0 is smaller than the turbulence coherence diameter d0: Our results indicate that BLISL can achieve a BEP of 10 � 9 and data rate of 1Gbps with normalized pointing vibration of GT *s 2 ¼ 0:05 and turbulence of sX ¼ 0:3: Copyright # 2003 John Wiley & Sons, Ltd.

25 citations

Journal ArticleDOI
TL;DR: In this article, the average atmospheric modulation transfer function (MTF) at the time the image is received is used to help overcome the jitter characteristics of turbulence, and is capable of yielding real-time image restoration with resolution limited essentially only by the hardware itself.
Abstract: A new method of real-time high-resolution imaging through the atmosphere is presented. This technique is based on knowledge of average atmospheric modulation transfer function (MTF) at the time the image is received. Atmospheric effects are modeled by a noisy spatial frequency filter including an average component described by the average atmospheric MTF and a noisy component modeled by the atmospheric point spread function's power spectral density. The noisy component represents random changes in the atmospheric MTF. Analytical results are accompanied by experimental image restoration examples, indicating significant image quality improvement based on knowledge of average atmospheric MTF, which includes both turbulence and aerosol MTF components. This method can be used to help overcome the jitter characteristics of turbulence, and is capable of yielding real-time image restoration with resolution limited essentially only by the hardware itself. Turbulence blur, aerosol blur, and contrast degradation are all corrected simultaneously, unlike adaptive optics, which corrects for turbulence only.

24 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A universal statistical model for texture images in the context of an overcomplete complex wavelet transform is presented, demonstrating the necessity of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are removed from the set.
Abstract: We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We develop an efficient algorithm for synthesizing random images subject to these constraints, by iteratively projecting onto the set of images satisfying each constraint, and we use this to test the perceptual validity of the model. In particular, we demonstrate the necessity of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are removed from the set. We also demonstrate the power of our model by successfully synthesizing examples drawn from a diverse collection of artificial and natural textures.

1,978 citations

Journal ArticleDOI
TL;DR: OCT as discussed by the authors synthesises cross-sectional images from a series of laterally adjacent depth-scans, which can be used to assess tissue and cell function and morphology in situ.
Abstract: There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

1,914 citations

Journal ArticleDOI
TL;DR: An up-to-date survey on FSO communication systems is presented, describing FSO channel models and transmitter/receiver structures and details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits are provided.
Abstract: Optical wireless communication (OWC) refers to transmission in unguided propagation media through the use of optical carriers, i.e., visible, infrared (IR), and ultraviolet (UV) bands. In this survey, we focus on outdoor terrestrial OWC links which operate in near IR band. These are widely referred to as free space optical (FSO) communication in the literature. FSO systems are used for high rate communication between two fixed points over distances up to several kilometers. In comparison to radio-frequency (RF) counterparts, FSO links have a very high optical bandwidth available, allowing much higher data rates. They are appealing for a wide range of applications such as metropolitan area network (MAN) extension, local area network (LAN)-to-LAN connectivity, fiber back-up, backhaul for wireless cellular networks, disaster recovery, high definition TV and medical image/video transmission, wireless video surveillance/monitoring, and quantum key distribution among others. Despite the major advantages of FSO technology and variety of its application areas, its widespread use has been hampered by its rather disappointing link reliability particularly in long ranges due to atmospheric turbulence-induced fading and sensitivity to weather conditions. In the last five years or so, there has been a surge of interest in FSO research to address these major technical challenges. Several innovative physical layer concepts, originally introduced in the context of RF systems, such as multiple-input multiple-output communication, cooperative diversity, and adaptive transmission have been recently explored for the design of next generation FSO systems. In this paper, we present an up-to-date survey on FSO communication systems. The first part describes FSO channel models and transmitter/receiver structures. In the second part, we provide details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits. Specific topics include advances in modulation, channel coding, spatial/cooperative diversity techniques, adaptive transmission, and hybrid RF/FSO systems.

1,749 citations

Journal ArticleDOI
TL;DR: The use of ML detection in spatial diversity reception to reduce the diversity gain penalty caused by correlation between the fading at different receivers is described.
Abstract: In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received light signal, impairing link performance. We describe several communication techniques to mitigate turbulence-induced intensity fluctuations, i.e., signal fading. These techniques are applicable in the regime in which the receiver aperture is smaller than the correlation length of fading and the observation interval is shorter than the correlation time of fading. We assume that the receiver has no knowledge of the instantaneous fading state. When the receiver knows only the marginal statistics of the fading, a symbol-by-symbol ML detector can be used to improve detection performance. If the receiver has knowledge of the joint temporal statistics of the fading, maximum-likelihood sequence detection (MLSD) can be employed, yielding a further performance improvement, but at the cost of very high complexity. Spatial diversity reception with multiple receivers can also be used to overcome turbulence-induced fading. We describe the use of ML detection in spatial diversity reception to reduce the diversity gain penalty caused by correlation between the fading at different receivers.

1,490 citations