scispace - formally typeset
Search or ask a question
Author

Norman S. Kopeika

Bio: Norman S. Kopeika is an academic researcher from Ben-Gurion University of the Negev. The author has contributed to research in topics: Image restoration & Optical transfer function. The author has an hindex of 36, co-authored 371 publications receiving 5221 citations. Previous affiliations of Norman S. Kopeika include Ariel University & University of Pennsylvania.


Papers
More filters
Proceedings ArticleDOI
08 Jun 1994
TL;DR: This work defines typical characteristics of optical pulse propagation through clouds and proposes a model for optimum performance of digital optical communication through clouds using Monte-Carlo simulation.
Abstract: Optical space communication will use clouds as part of communication channels. Propagation of optical pulses through clouds causes widening and deformation in the time domain and attenuation of the pulse radiant power. These effects decrease the received signal and limit the information bandwidth of the communication system. This work defines typical characteristics of optical pulse propagation through clouds. Characteristics of the optical pulses are calculated using Monte-Carlo simulation. Based on these characteristics a model for optimum performance of digital optical communication through clouds is presented. Examples for practical communication systems are given. An adaptive method to improve and in some cases to make possible communication is suggested. Comparison and analysis of two models of communication systems in cloud channels are presented: (1) adaptive transmitter and standard receiver (semi-adaptive system) and (2) adaptive transmitter and receiver (adaptive system). An improvement of more than eight orders of magnitude in bit error rate under certain conditions is possible with the new adaptive system model.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a mathematical model is developed to relate wavelength tuning with surface potential and forward voltage shift, which suggests the possibility of wavelength tuning via surface band-bending changes deriving from surface electric field changes, as is done with MIS devices.
Abstract: Wavelength tuning via shallow junction GaAs LED's as a result of gamma irradiation is increased significantly when the irradiated LED's are operated in vacuum. Vacuum operation is seen to be essentially equivalent to increased gamma ray dosage for low irradiation levels as a result of desorptive processes common to both phenomena. They give rise to decreased nonradiative and increased radiative components of surface recombination photon emission. It is this spectrum which is shifted according to changes in surface potential and forward voltage deriving from alterations in surface state populations. A mathematical model is developed to relate wavelength tuning with surface potential and forward voltage shift. This technique is, in principle, a general technique independent of semiconductor material. It suggests the possibility of wavelength tuning via surface band-bending changes deriving from surface electric field changes, as is done with MIS devices. Examination of irradiated diode properties in vacuum and under pressure permits greater insight into the basic nature of surface phenomena long suspected to play a significant role in the diode electronic property changes brought about by nuclear irradiation.

9 citations

Proceedings ArticleDOI
26 May 1995
TL;DR: In this article, the authors derived the optical transfer function (OTF) from the relative displacement between the camera and the object using a motion sensor, and fitted it to a sinusoidal function.
Abstract: This paper deals with the restoration of images blurred as a result of image motion or vibration The key for restoration algorithm success is to derive accurately the Optical Transfer Function (OTF) representing the image motion degradation in the spatial frequency domain The basic method of obtaining the OTF from the relative displacement between the camera and the object using a motion sensor has been developed recently and is discussed elsewhere In this paper, the motion function is derived instead from analysis of a sequence of images The first step is to obtain the image motion information from the sequence of images according to two well known algorithms - the Block Matching Algorithm (BMA) and Edge Trace Tracking (ETT) The basis for these two methods consists of tracking a block or an edge through a sequence of several images The results of these two methods were fitted to a sinusoidal function, compared, and there was excellent agreement between them Finally, the image is restored using the OTF obtained from the tracking method

9 citations

Journal ArticleDOI
TL;DR: A restoration filter for individual images blurred randomly by low-frequency mechanical vibrations is developed, independent of the instant of exposure.
Abstract: Mechanical vibrations are often the principal cause of image degradation. Low temporal-frequency mechanical vibrations involve random image degradation that depends on the instant of exposure. Exact restoration requires the calculation of a specific filter unique to each vibrated image. To calculate the restoration filter for each image, one needs the specific optical transfer function unique to the motion in the image. Therefore the instant of exposure and the motion function have to be measured or estimated by some other means. We develop a restoration filter for individual images blurred randomly by low-frequency mechanical vibrations. The filter is independent of the instant of exposure. The filter is designed to give its best performance averaged over a complete ensemble of vibrated images. Although when applying the new filter to any vibrated image the restoration achieved is slightly poorer than that achieved with an exact filter unique to the specific motion function, the new filter has the advantage of simplicity.

9 citations

Journal ArticleDOI
TL;DR: In this article, the extinction coefficients of aerosols are calculated using the PMS data, and those arising from molecular absorption are calculated by MODTRAN, and a simple and accurate model is obtained to predict dependence of the extinction coefficient on weather.
Abstract: Path-integrated atmospheric transmittance for visible wavelengths over a 5.5-km horizontal path is measured using black target contrast ratio. Measurements of on-line particulate distributions by particulate measuring system instrumentation (PMS) and of meteorological parameters are also performed. The extinction coefficients, primarily scattering, of aerosols are calculated using the PMS data, and those arising from molecular absorption are calculated by MODTRAN. Both extinction coefficients—the directly measured path-integrated ones and those calculated from particulate distribution and meteorological parameters near the receiver—are compared. Good agreement exists, especially when relative humidity is low, despite the fact that the second method involves aerosol size distribution by data collected from only a single point along the atmospheric path. Disagreement between both methods under high values of relative humidity can be explained by classification errors of the PMS instrumentation because of changes in the index of refraction of particles in a humid environment. Statistical regression analysis is made relating the measured transmittance values to online meteorological data. A simple and accurate model is obtained to predict dependence of the extinction coefficient on weather. The regression coefficients model shows that other meteorological parameters in addition to relative humidity are responsible for the changes in the atmospheric scattering coefficients. This contradicts the MODTRAN and Kasten-Hanel models for a continental atmosphere, which are based upon specific types of aerosols rather than a mixture of them.

9 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A universal statistical model for texture images in the context of an overcomplete complex wavelet transform is presented, demonstrating the necessity of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are removed from the set.
Abstract: We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We develop an efficient algorithm for synthesizing random images subject to these constraints, by iteratively projecting onto the set of images satisfying each constraint, and we use this to test the perceptual validity of the model. In particular, we demonstrate the necessity of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are removed from the set. We also demonstrate the power of our model by successfully synthesizing examples drawn from a diverse collection of artificial and natural textures.

1,978 citations

Journal ArticleDOI
TL;DR: OCT as discussed by the authors synthesises cross-sectional images from a series of laterally adjacent depth-scans, which can be used to assess tissue and cell function and morphology in situ.
Abstract: There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

1,914 citations

Journal ArticleDOI
TL;DR: An up-to-date survey on FSO communication systems is presented, describing FSO channel models and transmitter/receiver structures and details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits are provided.
Abstract: Optical wireless communication (OWC) refers to transmission in unguided propagation media through the use of optical carriers, i.e., visible, infrared (IR), and ultraviolet (UV) bands. In this survey, we focus on outdoor terrestrial OWC links which operate in near IR band. These are widely referred to as free space optical (FSO) communication in the literature. FSO systems are used for high rate communication between two fixed points over distances up to several kilometers. In comparison to radio-frequency (RF) counterparts, FSO links have a very high optical bandwidth available, allowing much higher data rates. They are appealing for a wide range of applications such as metropolitan area network (MAN) extension, local area network (LAN)-to-LAN connectivity, fiber back-up, backhaul for wireless cellular networks, disaster recovery, high definition TV and medical image/video transmission, wireless video surveillance/monitoring, and quantum key distribution among others. Despite the major advantages of FSO technology and variety of its application areas, its widespread use has been hampered by its rather disappointing link reliability particularly in long ranges due to atmospheric turbulence-induced fading and sensitivity to weather conditions. In the last five years or so, there has been a surge of interest in FSO research to address these major technical challenges. Several innovative physical layer concepts, originally introduced in the context of RF systems, such as multiple-input multiple-output communication, cooperative diversity, and adaptive transmission have been recently explored for the design of next generation FSO systems. In this paper, we present an up-to-date survey on FSO communication systems. The first part describes FSO channel models and transmitter/receiver structures. In the second part, we provide details on information theoretical limits of FSO channels and algorithmic-level system design research activities to approach these limits. Specific topics include advances in modulation, channel coding, spatial/cooperative diversity techniques, adaptive transmission, and hybrid RF/FSO systems.

1,749 citations

Journal ArticleDOI
TL;DR: The use of ML detection in spatial diversity reception to reduce the diversity gain penalty caused by correlation between the fading at different receivers is described.
Abstract: In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received light signal, impairing link performance. We describe several communication techniques to mitigate turbulence-induced intensity fluctuations, i.e., signal fading. These techniques are applicable in the regime in which the receiver aperture is smaller than the correlation length of fading and the observation interval is shorter than the correlation time of fading. We assume that the receiver has no knowledge of the instantaneous fading state. When the receiver knows only the marginal statistics of the fading, a symbol-by-symbol ML detector can be used to improve detection performance. If the receiver has knowledge of the joint temporal statistics of the fading, maximum-likelihood sequence detection (MLSD) can be employed, yielding a further performance improvement, but at the cost of very high complexity. Spatial diversity reception with multiple receivers can also be used to overcome turbulence-induced fading. We describe the use of ML detection in spatial diversity reception to reduce the diversity gain penalty caused by correlation between the fading at different receivers.

1,490 citations