scispace - formally typeset
Search or ask a question
Author

Norvald Stol

Bio: Norvald Stol is an academic researcher from Norwegian University of Science and Technology. The author has contributed to research in topics: Packet switching & Burst switching. The author has an hindex of 12, co-authored 68 publications receiving 485 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the proposed optical packet switched (OPS) hybrid network model supports both high throughput efficiency and guaranteed service transport (GST) with no packet loss and constant delay.
Abstract: We show that our proposed optical packet switched (OPS) hybrid network model supports both high throughput efficiency and guaranteed service transport (GST) with no packet loss and constant delay. The network comprises a wavelength routed optical network (WRON) enabling GST, and a statistically multiplexed (SM) network enabling high throughput. In the WRON, packets follow a fixed wavelength path and forwarding is based on the packets wavelength, while in the SM network, packets are switched according to header information. High reliability of GST packet forwarding is possible, because the forwarding does not depend on the operation of the packet switch. A novel node design supporting three Quality of Service (QoS) classes is proposed and described in detail. It facilitates full sharing of the link bandwidth by segregating GST packets and SM packets using polarization time division multiplexing (PTDM). SM packets are differentiated into two specified sub-QoS classes employing a novel buffer reservation technique and asynchronous buffer scheduling algorithm AIP3Q. We present a detailed analysis of the node throughput performance, demonstrating that buffering resource requirements are reduced in the optical packet switch, because processing and buffering of GST packets is avoided. The SM packet QoS differentiation permits a further reduction of buffer resources

50 citations

Proceedings ArticleDOI
01 Dec 2011
TL;DR: A new hybrid network architecture including different transport technologies to support a wide range of services is presented, and a possible set of foreseeable services with different QoS needs is mapped into these levels to show the effectiveness of the hybrid networking in managing multi-service requests.
Abstract: This paper presents a new hybrid network architecture including different transport technologies to support a wide range of services. In particular the proposed hybrid network provides three service levels, and a possible set of foreseeable services with different QoS needs is mapped into these levels to show the effectiveness of the hybrid networking in managing multi-service requests. In the switching nodes of the network, each service level is associated to a different switching technology, thus optimizing the switch implementation. In the nodes of the network, the service levels are distinguished based on optical encoding techniques, while an output collision stage manages the access to the output wavelengths. Performance studies show the effectiveness of the output collision mechanism.

33 citations

Proceedings ArticleDOI
06 May 2001
TL;DR: A novel priority-oriented CAC strategy is proposed, based on 3GPP defined QoS classes for multimedia traffic in UMTS, which introduces a QoS renegotiation procedure, resulting in a lower blocking probability for overall traffic.
Abstract: A novel priority-oriented CAC strategy has been proposed in this paper, based on 3GPP defined QoS classes for multimedia traffic in UMTS. The basic idea of our scheme is to let the higher priority class(es) have precedence over the lower priority class(es) at call admission, i.e. the more 'important' calls have more opportunities to be accepted. For delay tolerable classes of traffic, we introduce a QoS renegotiation procedure, resulting in a lower blocking probability for overall traffic. Simulation results under various traffic loads are also presented.

30 citations

Journal ArticleDOI
TL;DR: An evaluation framework is presented, which quantifies the throughput reduction observed when migrating from a best effort scenario to a service-differentiated scenario, and shows that preemption-based schemes have the best performance, but also the highest implementation complexity.
Abstract: Existing quality of service differentiation schemes for today's IP over point-to-point optical WDM networks take advantage of electronic RAM to implement traffic management algorithms in order to isolate the service classes. Since practical optical RAM is not available, these techniques are not suitable for a future all-optical network. Hence, new schemes are needed to support QoS differentiation in optical packet-switched (OPS) networks. In this article we first present an overview of existing QoS differentiation mechanisms suitable for asynchronous bufferless OPS. We then compare the performance of the presented schemes and qualitatively discuss implementation issues, in order to evaluate the mechanisms. In particular, we present an evaluation framework, which quantifies the throughput reduction observed when migrating from a best effort scenario to a service-differentiated scenario. Our study shows that preemption-based schemes have the best performance, but also the highest implementation complexity

28 citations

Proceedings ArticleDOI
10 Jun 2014
TL;DR: The numerical results characterize the limitations in network dimensioning when considering an SDN controller implementation in the presence of different flow mixes and Employing flow aggregation and/or parallel distributed controllers is outlined as potential solution to achieve SDN network scalability.
Abstract: The development of software defined networking (SDN) has instigated a growing number of experimental studies which demonstrate the flexibility in network control and management introduced by this technique. Optical networks add new challenges for network designers and operators to successfully dimension and deploy an SDN-based in the optical domain. At present, few performance evaluations and scalability studies that consider the high-bandwidth of the optical domain and the flow characterization from current Internet statistics have been developed. In this paper these parameters are taken as key inputs to study SDN scalability in the optical domain. As a relevant example an optical ring Metropolitan Area Network (MAN) is analyzed with circuit and packet traffic integrated at the wavelength level. The numerical results characterize the limitations in network dimensioning when considering an SDN controller implementation in the presence of different flow mixes. Employing flow aggregation and/or parallel distributed controllers is outlined as potential solution to achieve SDN network scalability.

24 citations


Cited by
More filters
Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations

Journal ArticleDOI
01 May 1975
TL;DR: The Fundamentals of Queueing Theory, Fourth Edition as discussed by the authors provides a comprehensive overview of simple and more advanced queuing models, with a self-contained presentation of key concepts and formulae.
Abstract: Praise for the Third Edition: "This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented."IIE Transactions on Operations EngineeringThoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than presenting a narrow focus on the subject, this update illustrates the wide-reaching, fundamental concepts in queueing theory and its applications to diverse areas such as computer science, engineering, business, and operations research.This update takes a numerical approach to understanding and making probable estimations relating to queues, with a comprehensive outline of simple and more advanced queueing models. Newly featured topics of the Fourth Edition include:Retrial queuesApproximations for queueing networksNumerical inversion of transformsDetermining the appropriate number of servers to balance quality and cost of serviceEach chapter provides a self-contained presentation of key concepts and formulae, allowing readers to work with each section independently, while a summary table at the end of the book outlines the types of queues that have been discussed and their results. In addition, two new appendices have been added, discussing transforms and generating functions as well as the fundamentals of differential and difference equations. New examples are now included along with problems that incorporate QtsPlus software, which is freely available via the book's related Web site.With its accessible style and wealth of real-world examples, Fundamentals of Queueing Theory, Fourth Edition is an ideal book for courses on queueing theory at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners who analyze congestion in the fields of telecommunications, transportation, aviation, and management science.

2,562 citations

Book
Michael R. Lyu1
30 Apr 1996
TL;DR: Technical foundations introduction software reliability and system reliability the operational profile software reliability modelling survey model evaluation and recalibration techniques practices and experiences and best current practice of SRE software reliability measurement experience.
Abstract: Technical foundations introduction software reliability and system reliability the operational profile software reliability modelling survey model evaluation and recalibration techniques practices and experiences best current practice of SRE software reliability measurement experience measurement-based analysis of software reliability software fault and failure classification techniques trend analysis in validation and maintenance software reliability and field data analysis software reliability process assessment emerging techniques software reliability prediction metrics software reliability and testing fault-tolerant SRE software reliability using fault trees software reliability process simulation neural networks and software reliability. Appendices: software reliability tools software failure data set repository.

1,068 citations

Journal ArticleDOI
TL;DR: To support bursty traffic on the Internet (and especially WWW) efficiently, optical burst switching (OBS) is proposed as a way to streamline both protocols and hardware in building the future gener...
Abstract: To support bursty traffic on the Internet (and especially WWW) efficiently, optical burst switching (OBS) is proposed as a way to streamline both protocols and hardware in building the future gener...

674 citations

Journal ArticleDOI
TL;DR: This article comprehensively survey studies that examine the SDN paradigm in optical networks; in brief, it mainly organize the SDON studies into studies focused on the infrastructure layer, the control layer, and the application layer.
Abstract: The emerging software defined networking (SDN) paradigm separates the data plane from the control plane and centralizes network control in an SDN controller. Applications interact with controllers to implement network services, such as network transport with quality of service. SDN facilitates the virtualization of network functions so that multiple virtual networks can operate over a given installed physical network infrastructure. Due to the specific characteristics of optical (photonic) communication components and the high optical transmission capacities, SDN-based optical networking poses particular challenges, but holds also great potential. In this article, we comprehensively survey studies that examine the SDN paradigm in optical networks; in brief, we survey the area of software defined optical networks (SDONs). We mainly organize the SDON studies into studies focused on the infrastructure layer, the control layer, and the application layer. Moreover, we cover SDON studies focused on network virtualization, as well as SDON studies focused on the orchestration of multilayer and multidomain networking. Based on the survey, we identify open challenges for SDONs and outline future directions.

269 citations