scispace - formally typeset
Search or ask a question
Author

Nozomu Yachie

Bio: Nozomu Yachie is an academic researcher from University of Tokyo. The author has contributed to research in topics: CRISPR & Genome editing. The author has an hindex of 21, co-authored 62 publications receiving 2672 citations. Previous affiliations of Nozomu Yachie include Keio University & University of British Columbia.
Topics: CRISPR, Genome editing, Gene, Cas9, RNA


Papers
More filters
Journal ArticleDOI
16 Sep 2016-Science
TL;DR: The toxicity associated with the nuclease-based CRISPR/Cas9 system was greatly reduced in the Target-AID complexes, and it was demonstrated that off-target effects were comparable to those of conventional CRISpr/Cas systems, with a reduced risk of indel formation.
Abstract: INTRODUCTION To combat invading pathogens, cells develop an adaptive immune response by changing their own genetic information. In vertebrates, the generation of genetic variation (somatic hypermutation) is an essential process for diversification and affinity maturation of antibodies that function to detect and sequester various foreign biomolecules. The activation-induced cytidine deaminase (AID) carries out hypermutation by modifying deoxycytidine bases in the variable region of the immunoglobulin locus that produces antibody. AID-generated deoxyuridine in DNA is mutagenic as it can be miss-recognized as deoxythymine, resulting in C to T mutations. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) is a prokaryotic adaptive immune system that records and degrades invasive foreign DNA or RNA. The CRISPR/Cas system cleaves and incorporates foreign DNA/RNA segments into the genomic region called the CRISPR array. The CRISPR array is transcribed to produce crispr-RNA that serves as guide RNA (gRNA) for recognition of the complementary foreign DNA/RNA in a ribonucleoprotein complex with Cas proteins, which degrade the target. The CRISPR/Cas system has been repurposed as a powerful genome editing tool, because it can be programmed to cleave specific DNA sequence by providing custom gRNAs. RATIONALE Although the precise mechanism by which AID specifically mutates the immunoglobulin locus remains elusive, targeting of AID activity is facilitated by the formation of a single-stranded DNA region, such as a transcriptional RNA/DNA hybrid (R-loop). The CRISPR/Cas system can be engineered to be nuclease-inactive. The nuclease-inactive form is capable of unfolding the DNA double strand in a protospacer adjacent motif (PAM) sequence-dependent manner so that the gRNA binds to complementary target DNA strand and forms an R-loop. The nuclease-deficient CRISPR/Cas system may serve as a suitable DNA-targeting module for AID to catalyze site-specific mutagenesis. RESULTS To determine whether AID activity can be specifically targeted by the CRISPR/Cas system, we combined dCas9 (a nuclease-deficient mutant of Cas9) from Streptococcus pyogenes and an AID ortholog, PmCDA1 from sea lamprey, to form a synthetic complex (Target-AID) by either engineering a fusion between the two proteins or attaching a SH3 (Src 3 homology) domain to the C terminus of dCas9 and a SHL (SH3 interaction ligand) to the C terminus of PmCDA1. Both of these complexes performed highly efficient site-directed mutagenesis. The mutational spectrum was analyzed in yeast and demonstrated that point mutations were dominantly induced at cytosines within the range of three to five bases surrounding the –18 position upstream of the PAM sequence on the noncomplementary strand to gRNA. The toxicity associated with the nuclease-based CRISPR/Cas9 system was greatly reduced in the Target-AID complexes. Combination of PmCDA1 with the nickase Cas9(D10A) mutant, which retains cleavage activity for noncomplementary single-stranded DNA, was more efficient in yeast but also induced deletions as well as point mutations in mammalian cells. Addition of the uracil DNA glycosylase inhibitor protein, which blocks the initial step of the uracil base excision repair pathway, suppressed collateral deletions and further improved targeting efficiency. Potential off-target effects were assessed by whole-genome sequencing of yeast as well as deep sequencing of mammalian cells for regions that contain mismatched target sequences. These results showed that off-target effects were comparable to those of conventional CRISPR/Cas systems, with a reduced risk of indel formation. CONCLUSION By expanding the genome editing potential of the CRISPR/Cas9 system by deaminase-mediated hypermutation, Target-AID demonstrated a very narrow range of targeted nucleotide substitution without the use of template DNA. Nickase Cas9 and uracil DNA glycosylase inhibitor protein can be used to boost the targeting efficiency. The reduced cytotoxicity will be beneficial for use in cells that are sensitive to artificial nucleases. Use of other types of nucleotide-modifying enzymes and/or other CRISPR-related systems with different PAM requirements will expand our genome-editing repertoire and capacity.

1,009 citations

Journal ArticleDOI
21 Sep 2018-Science
TL;DR: A rationally engineered SpCas9 variant (SpCas9-NG) that can recognize relaxed NG PAMs is reported, which is a powerful addition to the CRISPR-Cas9 genome engineering toolbox and will be useful in a broad range of applications, from basic research to clinical therapeutics.
Abstract: The RNA-guided endonuclease Cas9 cleaves its target DNA and is a powerful genome-editing tool However, the widely used Streptococcus pyogenes Cas9 enzyme (SpCas9) requires an NGG protospacer adjacent motif (PAM) for target recognition, thereby restricting the targetable genomic loci Here, we report a rationally engineered SpCas9 variant (SpCas9-NG) that can recognize relaxed NG PAMs The crystal structure revealed that the loss of the base-specific interaction with the third nucleobase is compensated by newly introduced non–base-specific interactions, thereby enabling the NG PAM recognition We showed that SpCas9-NG induces indels at endogenous target sites bearing NG PAMs in human cells Furthermore, we found that the fusion of SpCas9-NG and the activation-induced cytidine deaminase (AID) mediates the C-to-T conversion at target sites with NG PAMs in human cells

711 citations

Journal ArticleDOI
23 Apr 2015-Cell
TL;DR: This work functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays, suggesting that disease-associated alleles that perturb distinct protein activities rather than grossly affecting folding and stability are relatively widespread.

453 citations

Journal ArticleDOI
TL;DR: A codon-optimized fusion of the cytosine deaminase PmCDA1, the adenosine deaminationase TadA and a Cas9 nickase (Target-ACEmax) showed a high median simultaneous C-to-T and A- to-G editing activity at 47 genomic targets.
Abstract: We describe base editors that combine both cytosine and adenine base-editing functions. A codon-optimized fusion of the cytosine deaminase PmCDA1, the adenosine deaminase TadA and a Cas9 nickase (Target-ACEmax) showed a high median simultaneous C-to-T and A-to-G editing activity at 47 genomic targets. On-target as well as DNA and RNA off-target activities of Target-ACEmax were similar to those of existing single-function base editors. Base editors that modify both adenosine and cytosine broaden the potential applications of base editing.

114 citations

Journal ArticleDOI
19 Oct 2007-Science
TL;DR: Analysis of tRNA-processing intermediates for these genes indicates an unusual processing pathway in which the termini of the tRNA precursor are ligated, resulting in formation of a characteristic circular RNA intermediate that is then processed at the acceptor stem to generate the correct termini.
Abstract: A computational analysis of the nuclear genome of a red alga, Cyanidioschyzon merolae, identified 11 transfer RNA (tRNA) genes in which the 3' half of the tRNA lies upstream of the 5' half in the genome. We verified that these genes are expressed and produce mature tRNAs that are aminoacylated. Analysis of tRNA-processing intermediates for these genes indicates an unusual processing pathway in which the termini of the tRNA precursor are ligated, resulting in formation of a characteristic circular RNA intermediate that is then processed at the acceptor stem to generate the correct termini.

102 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Nov 2017-Nature
TL;DR: Adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA are described and a transfer RNA adenosine deaminase is evolved to operate on DNA when fused to a catalytically impaired CRISPR–Cas9 mutant.
Abstract: The spontaneous deamination of cytosine is a major source of transitions from C•G to T•A base pairs, which account for half of known pathogenic point mutations in humans. The ability to efficiently convert targeted A•T base pairs to G•C could therefore advance the study and treatment of genetic diseases. The deamination of adenine yields inosine, which is treated as guanine by polymerases, but no enzymes are known to deaminate adenine in DNA. Here we describe adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA. We evolved a transfer RNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9 mutant. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs that convert targeted A•T base pairs efficiently to G•C (approximately 50% efficiency in human cells) with high product purity (typically at least 99.9%) and low rates of indels (typically no more than 0.1%). ABEs introduce point mutations more efficiently and cleanly, and with less off-target genome modification, than a current Cas9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells. Together with previous base editors, ABEs enable the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.

2,451 citations

Journal Article
TL;DR: In this article, a nucleosome-DNA interaction model was proposed to predict the genome-wide organization of nucleosomes, and it was shown that genomes encode an intrinsic nucleosomal organization and that this intrinsic organization can explain ∼50% of the in-vivo positions.
Abstract: Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA binding proteins. Nucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences have a significant influence on nucleosome position in vivo, and thus regulate the access of other proteins to DNA. Here we isolated nucleosome-bound sequences at high resolution from yeast and used these sequences in a new computational approach to construct and validate experimentally a nucleosome–DNA interaction model, and to predict the genome-wide organization of nucleosomes. Our results demonstrate that genomes encode an intrinsic nucleosome organization and that this intrinsic organization can explain ∼50% of the in vivo nucleosome positions. This nucleosome positioning code may facilitate specific chromosome functions including transcription factor binding, transcription initiation, and even remodelling of the nucleosomes themselves.

1,399 citations

Journal Article
TL;DR: Why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease are detailed.
Abstract: Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here, we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease.

1,323 citations

Journal ArticleDOI
TL;DR: The recent progress on circRNA biogenesis and function is surveyed and technical obstacles in circRNA studies are discussed.

1,270 citations