scispace - formally typeset
Search or ask a question
Author

Nripan Mathews

Bio: Nripan Mathews is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Perovskite (structure) & Materials science. The author has an hindex of 71, co-authored 289 publications receiving 25607 citations. Previous affiliations of Nripan Mathews include Agency for Science, Technology and Research & École Polytechnique Fédérale de Lausanne.


Papers
More filters
Journal ArticleDOI
18 Oct 2013-Science
TL;DR: Two studies show, using a variety of time-resolved absorption and emission spectroscopic techniques, that perovskite materials manifest relatively long diffusion paths for charge carriers energized by light absorption, highlighting effective carrier diffusion as a fruitful parameter for further optimization.
Abstract: Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole diffusion lengths (typically about 10 nanometers). Recent reports of highly efficient CH3NH3PbI3-based solar cells in a broad range of configurations raise a compelling case for understanding the fundamental photophysical mechanisms in these materials. By applying femtosecond transient optical spectroscopy to bilayers that interface this perovskite with either selective-electron or selective-hole extraction materials, we have uncovered concrete evidence of balanced long-range electron-hole diffusion lengths of at least 100 nanometers in solution-processed CH3NH3PbI3. The high photoconversion efficiencies of these systems stem from the comparable optical absorption length and charge-carrier diffusion lengths, transcending the traditional constraints of solution-processed semiconductors.

5,882 citations

Journal ArticleDOI
TL;DR: It is revealed that solution-processed organic-inorganic halide perovskites (CH3NH3PbX3), which demonstrated huge potential in photovoltaics, also have promising optical gain and may show electrically driven lasing.
Abstract: Low-temperature solution-processed materials that show optical gain and can be embedded into a wide range of cavity resonators are attractive for the realization of on-chip coherent light sources. Organic semiconductors and colloidal quantum dots are considered the main candidates for this application. However, stumbling blocks in organic lasing include intrinsic losses from bimolecular annihilation and the conflicting requirements of high charge carrier mobility and large stimulated emission; whereas challenges pertaining to Auger losses and charge transport in quantum dots still remain. Herein, we reveal that solution-processed organic-inorganic halide perovskites (CH 3 NH 3 PbX 3 where X = Cl, Br, I), which demonstrated huge potential in photovoltaics, also have promising optical gain. Their ultra-stable amplified spontaneous emission at strikingly low thresholds stems from their large absorption coefficients, ultralow bulk defect densities and slow Auger recombination. Straightforward visible spectral tunability (390-790 nm) is demonstrated. Importantly, in view of their balanced ambipolar charge transport characteristics, these materials may show electrically driven lasing. © 2014 Macmillan Publishers Limited.

2,691 citations

Journal ArticleDOI
TL;DR: Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-EMitting diodes accomplished in two decades.
Abstract: Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices.

1,138 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the origin of the high efficiency in solution-processable bilayer solar cells based on methylammonium lead iodide (CH3NH3PbI3) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM).
Abstract: This work reports a study into the origin of the high efficiency in solution-processable bilayer solar cells based on methylammonium lead iodide (CH3NH3PbI3) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). Our cell has a power conversion efficiency (PCE) of 5.2% under simulated AM 1.5G irradiation (100 mW cm−2) and an internal quantum efficiency of close to 100%, which means that nearly all the absorbed photons are converted to electrons and are efficiently collected at the electrodes. This implies that the exciton diffusion, charge transfer and charge collection are highly efficient. The high exciton diffusion efficiency is enabled by the long diffusion length of CH3NH3PbI3 relative to its thickness. Furthermore, the low exciton binding energy of CH3NH3PbI3 implies that exciton splitting at the CH3NH3PbI3/PC61BM interface is very efficient. With further increase in CH3NH3PbI3 thickness, a higher PCE of 7.4% could be obtained. This is the highest efficiency attained for low temperature solution-processable bilayer solar cells to date.

954 citations

Journal ArticleDOI
TL;DR: Lead free perovskite solar cells based on a CsSnI3 light absorber with a spectral response from 950 nm with high photocurrents are demonstrated.
Abstract: Lead free perovskite solar cells based on a CsSnI3 light absorber with a spectral response from 950 nm is demonstrated. The high photocurrents noted in the system are a consequence of SnF2 addition which reduces defect concentrations and hence the background charge carrier density.

883 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Abstract: Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiativ...

6,170 citations

Journal ArticleDOI
18 Oct 2013-Science
TL;DR: Two studies show, using a variety of time-resolved absorption and emission spectroscopic techniques, that perovskite materials manifest relatively long diffusion paths for charge carriers energized by light absorption, highlighting effective carrier diffusion as a fruitful parameter for further optimization.
Abstract: Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole diffusion lengths (typically about 10 nanometers). Recent reports of highly efficient CH3NH3PbI3-based solar cells in a broad range of configurations raise a compelling case for understanding the fundamental photophysical mechanisms in these materials. By applying femtosecond transient optical spectroscopy to bilayers that interface this perovskite with either selective-electron or selective-hole extraction materials, we have uncovered concrete evidence of balanced long-range electron-hole diffusion lengths of at least 100 nanometers in solution-processed CH3NH3PbI3. The high photoconversion efficiencies of these systems stem from the comparable optical absorption length and charge-carrier diffusion lengths, transcending the traditional constraints of solution-processed semiconductors.

5,882 citations

Journal ArticleDOI
TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Abstract: The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.

5,684 citations

Journal ArticleDOI
TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Abstract: Within the space of a few years, hybrid organic–inorganic perovskite solar cells have emerged as one of the most exciting material platforms in the photovoltaic sector. This review describes the rapid progress that has been made in this area.

5,463 citations