scispace - formally typeset
Search or ask a question
Author

Nuno Miranda

Bio: Nuno Miranda is an academic researcher from European Space Research and Technology Centre. The author has contributed to research in topics: Remote sensing & Brightness. The author has an hindex of 2, co-authored 4 publications receiving 898 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The unique data availability performance of the Sentinel-1 routine operations makes the mission particularly suitable for emergency response support, marine surveillance, ice monitoring and interferometric applications such as detection of subsidence and landslides.

1,260 citations

06 Jun 2016
TL;DR: The paper described at high level the system operations, incl.
Abstract: As part of the European Copernicus programme, the Sentinel-1 mission, based on a constellation of two SAR satellites, ensures continuity for Europe of C-band SAR observations. Sentinel-1A and Sentinel-1B were respectively launched from Kourou on 3rd April 2014 and 25th April 2016. The paper, as part of the Sentinel-1 invited session, gives an overview of the overall mission status and focuses on the Sentinel-1A routine operations activities that started in June 2015 following the operational qualification phase, in terms of mission achievements, mission observation scenario, ground segment operations, throughput and data access. It also provides few examples of applications based on Sentinel-1 data.

20 citations

Journal ArticleDOI
TL;DR: The extended timing annotation dataset (ETAD) as discussed by the authors was developed in a joint effort of German Aerospace Center (DLR) and European Space Agency (ESA) to correct range and azimuth timing of S-1 images for geophysical effects.
Abstract: This article introduces the extended timing annotation dataset (ETAD) product for Sentinel-1 (S-1) which was developed in a joint effort of German Aerospace Center (DLR) and European Space Agency (ESA). It allows to correct range and azimuth timing of S-1 images for geophysical effects and for inaccuracies in synthetic aperture radar (SAR) image focusing. In combination with the precise orbit solution, these effects determine the absolute geolocation accuracy of S-1 SAR images and the relative collocation accuracy of repeat pass image stacks. ETAD contains the gridded timing corrections for the tropospheric and ionospheric path delays, the tidal-based surface displacements, and the SAR processing effects, all of which are computed for each data taken using standard models from geodesy and auxiliary atmospheric data. The ETAD product helps S-1 users to significantly improve the geolocation accuracy of the S-1 SAR products to better than 0.2 m and offers a potential solution for correcting large-scale interferometric phase variations. The product layout and product generation are described schematically. This article also reports first the results for different SAR techniques: first, the improvement in geolocation accuracy down to a few centimeters by verification of accurately surveyed corner reflector positions in the range–azimuth plane; second, the well-established offset-tracking technique, which is used for systematic ice velocity monitoring of ice sheets and glaciers, where ETAD can reduce velocity biases down to subcentimetric values; and third, the correction of atmospheric phase contributions in wide-area interferograms used for national and European ground motion services. These early results proof the added value of the ETAD corrections and that the product design is well-suited to be integrated into the processing flows of established SAR applications such as absolute ranging of targets, speckle/feature tracking, and interferometry.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: An overview of the GMES Sentinel-2 mission including a technical system concept overview, image quality, Level 1 data processing and operational applications is provided.

2,517 citations

Journal ArticleDOI
TL;DR: A multilevel DL architecture that targets land cover and crop type classification from multitemporal multisource satellite imagery outperforms the one with MLPs allowing us to better discriminate certain summer crop types.
Abstract: Deep learning (DL) is a powerful state-of-the-art technique for image processing including remote sensing (RS) images. This letter describes a multilevel DL architecture that targets land cover and crop type classification from multitemporal multisource satellite imagery. The pillars of the architecture are unsupervised neural network (NN) that is used for optical imagery segmentation and missing data restoration due to clouds and shadows, and an ensemble of supervised NNs. As basic supervised NN architecture, we use a traditional fully connected multilayer perceptron (MLP) and the most commonly used approach in RS community random forest, and compare them with convolutional NNs (CNNs). Experiments are carried out for the joint experiment of crop assessment and monitoring test site in Ukraine for classification of crops in a heterogeneous environment using nineteen multitemporal scenes acquired by Landsat-8 and Sentinel-1A RS satellites. The architecture with an ensemble of CNNs outperforms the one with MLPs allowing us to better discriminate certain summer crop types, in particular maize and soybeans, and yielding the target accuracies more than 85% for all major crops (wheat, maize, sunflower, soybeans, and sugar beet).

1,155 citations

Journal ArticleDOI
TL;DR: This paper provides a review of the main PSI algorithms proposed in the literature, describing the main approaches and the most important works devoted to single aspects of PSI, and discusses the main open PSI problems and the associated future research lines.
Abstract: Persistent Scatterer Interferometry (PSI) is a powerful remote sensing technique able to measure and monitor displacements of the Earth’s surface over time. Specifically, PSI is a radar-based technique that belongs to the group of differential interferometric Synthetic Aperture Radar (SAR). This paper provides a review of such PSI technique. It firstly recalls the basic principles of SAR interferometry, differential SAR interferometry and PSI. Then, a review of the main PSI algorithms proposed in the literature is provided, describing the main approaches and the most important works devoted to single aspects of PSI. A central part of this paper is devoted to the discussion of different characteristics and technical aspects of PSI, e.g. SAR data availability, maximum deformation rates, deformation time series, thermal expansion component of PSI observations, etc. The paper then goes through the most important PSI validation activities, which have provided valuable inputs for the PSI development and its acceptability at scientific, technical and commercial level. This is followed by a description of the main PSI applications developed in the last fifteen years. The paper concludes with a discussion of the main open PSI problems and the associated future research lines.

661 citations

Journal ArticleDOI
01 Jun 2020
TL;DR: The Global Ecosystem Dynamics Investigation (GEDI) was launched to the International Space Station in late 2018 to provide high-quality measurements of forest vertical structure in temperate and tropical forests between 51.6° N & S latitude as mentioned in this paper.
Abstract: Obtaining accurate and widespread measurements of the vertical structure of the Earth’s forests has been a long-sought goal for the ecological community. Such observations are critical for accurately assessing the existing biomass of forests, and how changes in this biomass caused by human activities or variations in climate may impact atmospheric CO2 concentrations. Additionally, the three-dimensional structure of forests is a key component of habitat quality and biodiversity at local to regional scales. The Global Ecosystem Dynamics Investigation (GEDI) was launched to the International Space Station in late 2018 to provide high-quality measurements of forest vertical structure in temperate and tropical forests between 51.6° N & S latitude. The GEDI instrument is a geodetic-class laser altimeter/waveform lidar comprised of 3 lasers that produce 8 transects of structural information. Over its two-year nominal lifetime GEDI is anticipated to provide over 10 billion waveforms at a footprint resolution of 25 ​m. These data will be used to derive a variety of footprint and gridded products, including canopy height, canopy foliar profiles, Leaf Area Index (LAI), sub-canopy topography and biomass. Additionally, data from GEDI are used to demonstrate the efficacy of its measurements for prognostic ecosystem modeling, habit and biodiversity studies, and for fusion using radar and other remote sensing instruments. GEDI science and technology are unique: no other space-based mission has been created that is specifically optimized for retrieving vegetation vertical structure. As such, GEDI promises to advance our understanding of the importance of canopy vertical variations within an ecological paradigm based on structure, composition and function.

449 citations