scispace - formally typeset
Search or ask a question
Author

Nuria Camiña

Bio: Nuria Camiña is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: microRNA & DNA methylation. The author has co-authored 1 publications.
Topics: microRNA, DNA methylation, KEAP1, NFE2L2, Epigenetics

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the activation of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor encoded by the NFE2L2 gene was investigated.
Abstract: Electrophilic and oxidative stress is caused when homeostatic mechanisms are disrupted. A major defense mechanism involves the activation of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor encoded by the NFE2L2 gene, which can accelerate the detoxification of electrophilic carcinogens and prevent cancer and on the other hand in certain exposure contexts may exacerbate the carcinogenic process. NRF2-target genes activated under these conditions can be used as biomarkers of stress signalling, while activation of NRF2 can also reveal the epigenetic mechanisms that modulate NFE2L2 expression. Epigenetic mechanisms that regulate NFE2L2 and the gene for its adaptor protein KEAP1 include DNA methylation, histone modifications and microRNA. Understanding the activation of the NRF2-KEAP1 signalling pathway in human lung cancer, its epigenetic regulation and its role in oncogenesis is the subject of this review.

9 citations


Cited by
More filters
Journal ArticleDOI
31 Mar 2022-MedComm
TL;DR: The roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis are revealed and two different therapeutic strategies to treat redox‐relevant diseases are suggested.
Abstract: Abstract Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double‐edged sword in disease progression suggest two different therapeutic strategies to treat redox‐relevant diseases, in which targeting ROS sources and redox‐related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox‐relevant diseases.

30 citations

Journal ArticleDOI
TL;DR: The results elucidate the construction of a versatile nano‐PROTAC enables to eliminate both lung cancer cells and TAMs, which opens a new avenue for efficient lung cancer therapy via PROTAC.
Abstract: Recent evidence has indicated that overexpression of the epigenetic reader bromodomain‐containing protein 4 (BRD4) contributes to a poor prognosis of lung cancers, and the suppression of its expression promotes cell apoptosis and leads to tumor shrinkage. Proteolysis targeting chimera (PROTAC) has recently emerged as a promising therapeutic strategy with the capability to precisely degrade targeted proteins. Herein, a novel style of versatile nano‐PROTAC (CREATE (CRV‐LLC membrane/DS‐PLGA/dBET6)) is developed, which is constructed by using a pH/GSH (glutathione)‐responsive polymer (disulfide bond‐linked poly(lactic‐co‐glycolic acid), DS‐PLGA) to load BRD4‐targeted PROTAC (dBET6), followed by the camouflage with engineered lung cancer cell membranes with dual targeting capability. Notably, CREATE remarkably confers simultaneous targeting ability to lung cancer cells and tumor‐associated macrophages (TAMs). The pH/GSH‐responsive design improves the release of dBET6 payload from nanoparticles to induce pronounced apoptosis of both cells, which synergistically inhibits tumor growth in both subcutaneous and orthotopic tumor‐bearing mouse model. Furthermore, the efficient tumor inhibition is due to the direct elimination of lung cancer cells and TAMs, which remodels the tumor microenvironment. Taken together, the results elucidate the construction of a versatile nano‐PROTAC enables to eliminate both lung cancer cells and TAMs, which opens a new avenue for efficient lung cancer therapy via PROTAC.

6 citations

Journal ArticleDOI
TL;DR: The role and mechanism of Nrf2 in the pathophysiology of pH is focused on and the relevant research of NRF2 agonists in pH in both experimental research and clinical trials is reviewed.
Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor involved in maintaining redox balance and activates the expression of downstream antioxidant enzymes. Nrf2 has received wide attention considering its crucial role in oxidative and electrophilic stress. Large amounts of studies have demonstrated the protective role of Nrf2 activation in various pulmonary hypertension (pH) models. Additionally, various kinds of natural phytochemicals acting as Nrf2 activators prevent the development of pH and provide a novel and promising therapeutic insight for the treatment of pH. In the current review, we give a brief introduction of Nrf2 and focus on the role and mechanism of Nrf2 in the pathophysiology of pH and then review the relevant research of Nrf2 agonists in pH in both experimental research and clinical trials.

3 citations

Journal ArticleDOI
TL;DR: In this paper , a review highlights the research that is demonstrating how NRF2 hyperactivation creates an environment that favors the survival of malignant cells and protects against oxidative stress and TMZ.
Abstract: The transcription factor NRF2 is constitutively active in glioblastoma, a highly aggressive brain tumor subtype with poor prognosis. Temozolomide (TMZ) is the primary chemotherapeutic agent for this type of tumor treatment, but resistance to this drug is often observed. This review highlights the research that is demonstrating how NRF2 hyperactivation creates an environment that favors the survival of malignant cells and protects against oxidative stress and TMZ. Mechanistically, NRF2 increases drug detoxification, autophagy, DNA repair, and decreases drug accumulation and apoptotic signaling. Our review also presents potential strategies for targeting NRF2 as an adjuvant therapy to overcome TMZ chemoresistance in glioblastoma. Specific molecular pathways, including MAPKs, GSK3β, βTRCP, PI3K, AKT, and GBP, that modulate NRF2 expression leading to TMZ resistance are discussed, along with the importance of identifying NRF2 modulators to reverse TMZ resistance and develop new therapeutic targets. Despite the significant progress in understanding the role of NRF2 in GBM, there are still unanswered questions regarding its regulation and downstream effects. Future research should focus on elucidating the precise mechanisms by which NRF2 mediates resistance to TMZ, and identifying potential novel targets for therapeutic intervention.

1 citations

Journal ArticleDOI
TL;DR: Methylation-specific NGS analysis represents a feasible method for a fast and multiplexed screening of cancer patients by a high-throughput approach and offers the opportunity to construct a more robust algorithm for disease prediction in cancer patients having a low quantity of biological material available.
Abstract: DNA methylation is the most recognized epigenetic mark that leads to a massive distortion in cancer cells. It has been observed that a large number of DNA aberrant methylation events occur simultaneously in a group of genes, thus providing a growth advantage to the cell in promoting cell differentiation and neoplastic transformation. Due to this reason, methylation profiles have been suggested as promising cancer biomarkers. Here, we designed and performed a first step of validation of a novel targeted next generation sequencing (NGS) panel for methylation analysis, which can simultaneously evaluate the methylation levels at CpG sites of multiple cancer-related genes. The OPERA_MET-A methylation panel was designed using the Ion AmpliSeq™ technology to amplify 155 regions with 125-175 bp mean length and covers a total of 1107 CpGs of 18 cancer-related genes. The performance of the panel was assessed by running commercially available fully methylated and unmethylated control human genomic DNA (gDNA) samples and a variable mixture of them. The libraries were run on Ion Torrent platform and the sequencing output was analyzed using the “methylation_analysis” plugin. DNA methylation calls on both Watson (W) and Crick (C) strands and methylated:unmethylated ratio for each CpG site were obtained. Cell lines, fresh frozen and formalin-fixed paraffin-embedded (FFPE) lung cancer tissues were tested. The OPERA_MET-A panel allows to run a minimum of 6 samples/530 chip to reach an observed mean target depth ≥2,500X (W and C strands) and an average number of mapped reads >750,000/sample. The conversion efficiency, determined by spiking-in unmethylated Lambda DNA into each sample before the bisulfite conversion process, was >97% for all samples. The observed percentage of global methylation for all CpGs was >95% and <5% for fully methylated and unmethylated gDNA samples, respectively, and the observed results for the variable mixtures were in agreement with what was expected. Methylation-specific NGS analysis represents a feasible method for a fast and multiplexed screening of cancer patients by a high-throughput approach. Moreover, it offers the opportunity to construct a more robust algorithm for disease prediction in cancer patients having a low quantity of biological material available.

1 citations