scispace - formally typeset
Search or ask a question
Author

Nuria Oliver

Other affiliations: Telefónica, Novartis, Microsoft  ...read more
Bio: Nuria Oliver is an academic researcher from Vodafone. The author has contributed to research in topics: Mobile phone & Hidden Markov model. The author has an hindex of 60, co-authored 216 publications receiving 16819 citations. Previous affiliations of Nuria Oliver include Telefónica & Novartis.


Papers
More filters
Journal ArticleDOI
TL;DR: A real-time computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task and demonstrates the ability to use these a priori models to accurately classify real human behaviors and interactions with no additional tuning or training.
Abstract: We describe a real-time computer vision and machine learning system for modeling and recognizing human behaviors in a visual surveillance task. The system deals in particularly with detecting when interactions between people occur and classifying the type of interaction. Examples of interesting interaction behaviors include following another person, altering one's path to meet another, and so forth. Our system combines top-down with bottom-up information in a closed feedback loop, with both components employing a statistical Bayesian approach. We propose and compare two different state-based learning architectures, namely, HMMs and CHMMs for modeling behaviors and interactions. Finally, a synthetic "Alife-style" training system is used to develop flexible prior models for recognizing human interactions. We demonstrate the ability to use these a priori models to accurately classify real human behaviors and interactions with no additional tuning or training.

1,831 citations

Proceedings ArticleDOI
01 Aug 2001
TL;DR: This paper describes a new framework for processing images by example, called “image analogies,” based on a simple multi-scale autoregression, inspired primarily by recent results in texture synthesis.
Abstract: This paper describes a new framework for processing images by example, called “image analogies.” The framework involves two stages: a design phase, in which a pair of images, with one image purported to be a “filtered” version of the other, is presented as “training data”; and an application phase, in which the learned filter is applied to some new target image in order to create an “analogous” filtered result. Image analogies are based on a simple multi-scale autoregression, inspired primarily by recent results in texture synthesis. By choosing different types of source image pairs as input, the framework supports a wide variety of “image filter” effects, including traditional image filters, such as blurring or embossing; improved texture synthesis, in which some textures are synthesized with higher quality than by previous approaches; super-resolution, in which a higher-resolution image is inferred from a low-resolution source; texture transfer, in which images are “texturized” with some arbitrary source texture; artistic filters, in which various drawing and painting styles are synthesized based on scanned real-world examples; and texture-by-numbers, in which realistic scenes, composed of a variety of textures, are created using a simple painting interface.

1,794 citations

Proceedings ArticleDOI
17 Jun 1997
TL;DR: Algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions are presented.
Abstract: We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and classifying dynamic behaviors, popular because they offer dynamic time warping, a training algorithm and a clear Bayesian semantics. However the Markovian framework makes strong restrictive assumptions about the system generating the signal-that it is a single process having a small number of states and an extremely limited state memory. The single-process model is often inappropriate for vision (and speech) applications, resulting in low ceilings on model performance. Coupled HMMs provide an efficient way to resolve many of these problems, and offer superior training speeds, model likelihoods, and robustness to initial conditions.

1,181 citations

Patent
01 Dec 2003
TL;DR: In this article, a perceptual user interface system includes a tracking component that detects object characteristics of at least one of a plurality of objects within a scene, and tracks the respective object.
Abstract: Architecture for implementing a perceptual user interface. The architecture comprises alternative modalities for controlling computer application programs and manipulating on-screen objects through hand gestures or a combination of hand gestures and verbal commands. The perceptual user interface system includes a tracking component that detects object characteristics of at least one of a plurality of objects within a scene, and tracks the respective object. Detection of object characteristics is based at least in part upon image comparison of a plurality of images relative to a course mapping of the images. A seeding component iteratively seeds the tracking component with object hypotheses based upon the presence of the object characteristics and the image comparison. A filtering component selectively removes the tracked object from the object hypotheses and/or at least one object hypothesis from the set of object hypotheses based upon predetermined removal criteria.

876 citations

Proceedings ArticleDOI
26 Sep 2010
TL;DR: This work introduces a Collaborative Filtering method based on Tensor Factorization, a generalization of Matrix Factorization that allows for a flexible and generic integration of contextual information by modeling the data as a User-Item-Context N-dimensional tensor instead of the traditional 2D User- Item matrix.
Abstract: Context has been recognized as an important factor to consider in personalized Recommender Systems. However, most model-based Collaborative Filtering approaches such as Matrix Factorization do not provide a straightforward way of integrating context information into the model. In this work, we introduce a Collaborative Filtering method based on Tensor Factorization, a generalization of Matrix Factorization that allows for a flexible and generic integration of contextual information by modeling the data as a User-Item-Context N-dimensional tensor instead of the traditional 2D User-Item matrix. In the proposed model, called Multiverse Recommendation, different types of context are considered as additional dimensions in the representation of the data as a tensor. The factorization of this tensor leads to a compact model of the data which can be used to provide context-aware recommendations.We provide an algorithm to address the N-dimensional factorization, and show that the Multiverse Recommendation improves upon non-contextual Matrix Factorization up to 30% in terms of the Mean Absolute Error (MAE). We also compare to two state-of-the-art context-aware methods and show that Tensor Factorization consistently outperforms them both in semi-synthetic and real-world data - improvements range from 2.5% to more than 12% depending on the data. Noticeably, our approach outperforms other methods by a wider margin whenever more contextual information is available.

809 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Reading a book as this basics of qualitative research grounded theory procedures and techniques and other references can enrich your life quality.

13,415 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: Conditional adversarial networks are investigated as a general-purpose solution to image-to-image translation problems and it is demonstrated that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pix2pix software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.

11,958 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: CycleGAN as discussed by the authors learns a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
Abstract: Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F : Y → X and introduce a cycle consistency loss to push F(G(X)) ≈ X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

11,682 citations

Posted Content
TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large number of internet users (many of them artists) have posted their own experiments with our system, further demonstrating its wide applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.

11,127 citations

Journal ArticleDOI
TL;DR: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends to discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Abstract: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

5,318 citations