scispace - formally typeset
Search or ask a question
Author

Nuriye Akev

Bio: Nuriye Akev is an academic researcher from Istanbul University. The author has contributed to research in topics: Aloe vera & Oxidative stress. The author has an hindex of 15, co-authored 32 publications receiving 1169 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, different antioxidant tests were employed in order to evaluate the antioxidant activities of water, infusion, ethanol and ethyl acetate extracts of S. excelsa leaves, and the results were compared with natural and synthetic antioxidants.

393 citations

Journal ArticleDOI
Alper Okyar1, Ayse Can1, Nuriye Akev1, Gül Baktir1, Nurhayat Sütlüpinar1 
TL;DR: The pulps of Aloe vera leaves devoid of the gel could be useful in the treatment of non‐insulin dependent diabetes mellitus.
Abstract: Aloe vera (L.) Burm. fil. (= A. barbadensis Miller) (Liliaceae) is native to North Africa and also cultivated in Turkey. Aloes have long been used all over the world for their various medicinal properties. In the past 15 years, there have been controversial reports on the hypoglycaemic activity of Aloe species, probably due to differences in the parts of the plant used or to the model of diabetes chosen. In this study, separate experiments on three main groups of rats, namely, non-diabetic (ND), type I (IDDM) and type II (NIDDM) diabetic rats were carried out. A. vera leaf pulp and gel extracts were ineffective on lowering the blood sugar level of ND rats. A. vera leaf pulp extract showed hypoglycaemic activity on IDDM and NIDDM rats, the effectiveness being enhanced for type II diabetes in comparison with glibenclamide. On the contrary, A. vera leaf gel extract showed hyperglycaemic activity on NIDDM rats. It may therefore be concluded that the pulps of Aloe vera leaves devoid of the gel could be useful in the treatment of non-insulin dependent diabetes mellitus

213 citations

Journal ArticleDOI
TL;DR: Aloe gel extract has a protective effect comparable to glibenclamide against hepatotoxicity produced by diabetes if used in the treatment of type-II diabetes.
Abstract: The aim of this work was to investigate the effects of Aloe vera leaf pulp and gel extracts on the liver tissue of neonatal streptozotocin (n0STZ)-induced type-II diabetic rats. The diabetic rats were separated into four groups and each group was given the following samples by gavage, daily for 15 d: phosphate buffered saline (PBS; diabetic control), Aloe leaf pulp extract, Aloe leaf gel extract, glibenclamide. Liver tissues were examined histologically. The markers of oxidative stress: glutathione (GSH), non-enzymatic glycosylation (NEG) and lipid peroxidation (LPO), were determined in liver tissue. Biochemical parameters for liver function: serum alkaline phosphatase (ALP), and alanine transaminase (ALP) activities, were evaluated. All parameters were also determined in healthy (non diabetic) rats for comparison. In the diabetic control group, the degenerative changes in liver tissue were remarkable, while in the diabetic groups given Aloe pulp and gel extracts and glibenclamide, the damage to the liver tissue was decreased. The increase of GSH and the decrease of NEG and LPO in liver tissues with the treatment of Aloe gel extract, is consistent with the beneficial effect of Aloe. Serum ALP and ALT activities were also decreased in the groups given Aloe gel extract. It was concluded that Aloe gel extract has a protective effect comparable to glibenclamide against hepatotoxicity produced by diabetes if used in the treatment of type-II diabetes.

132 citations

Journal ArticleDOI
TL;DR: In this article, the aqueous extract from Aloe vera leaves contained naturally occuring antioxidant components, including total phenols, flavonoids, ascorbic acid, β-carotene and α-tocopherol.
Abstract: In order to demonstrate whether the known biological effects of Aloe vera (L.) Burm. fil. could correlate with the antioxidant activity of the plant, the antioxidant activity of the aqueous leaf extract was investigated. The present study demonstrated that the aqueous extract from A. vera leaves contained naturally occuring antioxidant components, including total phenols, flavonoids, ascorbic acid, β-carotene and α-tocopherol. The extract exhibited inhibitory capacity against Fe 3+ /ascorbic acid induced phosphatidylcholine liposome oxidation, scavenged stable DPPH • , ABTS •+ and superoxide anion radicals, and acted as reductant. In contrast, the leaf inner gel did not show any antioxidant activity. It was concluded that the known beneficial effects of Aloe vera could be attributed to its antioxidant activity and could be related to the presence of phenolic compounds and antioxidant vitamins.

107 citations

Journal Article
TL;DR: Only A. vera leaf gel extract showed improvement both in histological and biochemical parameters suggesting a protective effect of A. Vera on mild damage caused by type-II diabetes on kidney tissue.
Abstract: Significant degenerative changes were observed in the kidney tissue of untreated neonatal streptozotocin (n0STZ)-induced type-II diabetic rats. These degenerative changes were diminished in the kidney tissue of diabetic animals given glibenclamide and Aloe leaf gel and pulp extracts. Kidney lipid peroxidation levels were increased in diabetic rats compared to healthy rats; these levels were higher in rats treated with glibenclamide than in those which received Aloe extracts. Serum urea and creatinine levels were higher in diabetic rats in comparison to healthy rats. The administration of Aloe gel extract and glibenclamide decreased serum urea and creatinine levels in comparison to diabetic controls. Only A. vera leaf gel extract showed improvement both in histological and biochemical parameters suggesting a protective effect of A. vera on mild damage caused by type-II diabetes on kidney tissue.

55 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of natural antioxidants, their mechanisms of action, and potential applications can be found in this article, where the authors provide an overview of the potential applications of these natural antioxidants.
Abstract: While use of synthetic antioxidants (such as butylated hydroxytoluene and butylated hydroxyanisole) to maintain the quality of ready-to-eat food products has become commonplace, consumer concern regarding their safety has motivated the food industry to seek natural alternatives. Phenolic antioxidants can inhibit free radical formation and/or interrupt propagation of autoxidation. Fat-soluble vitamin E (α-tocopherol) and water-soluble vitamin C (L-ascorbic acid) are both effective in the appropriate matrix. Plant extracts, generally used for their flavoring characteristics, often have strong H-donating activity thus making them extremely effective antioxidants. This antioxidant activity is most often due to phenolic acids (gallic, protocatechuic, caffeic, and rosmarinic acids), phenolic diterpenes (carnosol, carnosic acid, rosmanol, and rosmadial), flavonoids (quercetin, catechin, naringenin, and kaempferol), and volatile oils (eugenol, carvacrol, thymol, and menthol). Some plant pigments (anthocyanin and anthocyanidin) can chelate metals and donate H to oxygen radicals thus slowing oxidation via 2 mechanisms. Tea and extracts of grape seeds and skins contain catechins, epicatechins, phenolic acids, proanthocyanidins, and resveratrol, all of which contribute to their antioxidative activity. The objective of this article is to provide an overview of natural antioxidants, their mechanisms of action, and potential applications.

1,393 citations

Journal ArticleDOI
TL;DR: Traditional medicine in the south-eastern Moroccan population has not only survived but has thrived in the transcultural environment and intermixture of many ethnic traditions and beliefs.

555 citations

Journal ArticleDOI
TL;DR: A review of the botany, physical and chemical properties, and biological activities of the Aloe vera plant finds that it contains multiple constituents with potential biological and toxicological activities, yet the active components elude definition.
Abstract: Aloe barbadensis (Miller), Aloe vera, has a long history of use as a topical and oral therapeutic. The plant is the source of two products, gel and latex, which are obtained from its fleshy leaves. Aloe vera products contain multiple constituents with potential biological and toxicological activities, yet the active components elude definition. Ingestion of Aloe vera is associated with diarrhea, electrolyte imbalance, kidney dysfunction, and conventional drug interactions; episodes of contact dermatitis, erythema, and phototoxicity have been reported from topical applications. This review examines the botany, physical and chemical properties, and biological activities of the Aloe vera plant.

542 citations

Journal ArticleDOI
TL;DR: New classes of functionalized mucoadhesive polymers, the characterization and safety aspects of nasal drug products as well as the opportunities presented by nasal drug delivery are extensively discussed.

503 citations