scispace - formally typeset
Search or ask a question
Author

Nusrat Zerin Zenia

Bio: Nusrat Zerin Zenia is an academic researcher from Jahangirnagar University. The author has contributed to research in topics: Computer science & Efficient energy use. The author has an hindex of 7, co-authored 11 publications receiving 237 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders.
Abstract: Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.

164 citations

Book ChapterDOI
13 Dec 2019
TL;DR: The results show that deep learning based techniques can detect the level of disorder with relatively high accuracy and some possible future research directions are provided.
Abstract: Rapid development of high speed computing devices and infrastructure along with improved understanding of deep machine learning techniques during the last decade have opened up possibilities for advanced analysis of neuroimaging data. Using those computing tools Neuroscientists now can identify Neurodegenerative diseases from neuroimaging data. Due to the similarities in disease phenotypes, accurate detection of such disorders from neuroimaging data is very challenging. In this article, we have reviewed the methodological research papers proposing to detect neurodegenerative diseases using deep machine learning techniques only from MRI data. The results show that deep learning based techniques can detect the level of disorder with relatively high accuracy. Towards the end, current challenges are reviewed and some possible future research directions are provided.

80 citations

Journal ArticleDOI
TL;DR: It is found that the protocols for UWSN are highly selective, and the fitness of any protocol depends solely on the application and design requirements, which is addressed by this review.

73 citations

Book ChapterDOI
01 Jan 2021
TL;DR: In this article, the authors present the framework of 6G cellular networks, its aggregation with multidimensional communication techniques such as optical wireless communication network, cell-free communication system, backhaul network, and quantum communication, as well as distributed security paradigm in the context of Internet of Healthcare Things (IoHT).
Abstract: The Internet of Healthcare Things (IoHT) demands massive and smart connectivity, huge bandwidth, lower latency with ultra-high data rate and better quality of healthcare experience. Unlike the 5G wireless network, the upcoming 6G communication system is expected to provide Intelligent IoHT (IIoHT) services everywhere at any time to improve the quality of life of the human being. In this paper, we present the framework of 6G cellular networks, its aggregation with multidimensional communication techniques such as optical wireless communication network, cell-free communication system, backhaul network, and quantum communication, as well as distributed security paradigm in the context of IIoHT. Such low latency and ultra-high-speed communication network will provide a new paradigm for connecting homes to hospitals, healthcare people, medical devices, hospital infrastructure, etc. Also, the requirements of 6G wireless networking, other key techniques, challenges and research direction of deploying IIoHT are outlined in the article.

37 citations

Journal ArticleDOI
TL;DR: In this paper, a mobile app-based intelligent portable healthcare (pHealth) tool, called ${i}$ WorkSafe, is presented to assist industries in detecting possible suspects for COVID-19 infection among their employees who may need primary care.
Abstract: The recent outbreak of the novel Coronavirus Disease (COVID-19) has given rise to diverse health issues due to its high transmission rate and limited treatment options. Almost the whole world, at some point of time, was placed in lock-down in an attempt to stop the spread of the virus, with resulting psychological and economic sequela. As countries start to ease lock-down measures and reopen industries, ensuring a healthy workplace for employees has become imperative. Thus, this paper presents a mobile app-based intelligent portable healthcare (pHealth) tool, called ${i}$ WorkSafe, to assist industries in detecting possible suspects for COVID-19 infection among their employees who may need primary care. Developed mainly for low-end Android devices, the ${i}$ WorkSafe app hosts a fuzzy neural network model that integrates data of employees’ health status from the industry’s database, proximity and contact tracing data from the mobile devices, and user-reported COVID-19 self-test data. Using the built-in Bluetooth low energy sensing technology and K Nearest Neighbor and K-means techniques, the app is capable of tracking users’ proximity and trace contact with other employees. Additionally, it uses a logistic regression model to calculate the COVID-19 self-test score and a Bayesian Decision Tree model for checking real-time health condition from an intelligent e-health platform for further clinical attention of the employees. Rolled out in an apparel factory on 12 employees as a test case, the pHealth tool generates an alert to maintain social distancing among employees inside the industry. In addition, the app helps employees to estimate risk with possible COVID-19 infection based on the collected data and found that the score is effective in estimating personal health condition of the app user.

30 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT, and highlight interesting research challenges and point out potential directions to spur further research in this promising area.
Abstract: The sixth generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) towards a future of fully intelligent and autonomous systems. In this article, we explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space-air-ground-underwater communications, Terahertz communications, massive ultra-reliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely Healthcare Internet of Things, Vehicular Internet of Things and Autonomous Driving, Unmanned Aerial Vehicles, Satellite Internet of Things, and Industrial Internet of Things. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.

305 citations

Journal ArticleDOI
TL;DR: A survey of UWSN regarding underwater communication channel, environmental factors, localization, media access control, routing protocols, and effect of packet size on communication is conducted.
Abstract: Underwater Wireless Sensor Networks (UWSNs) contain several components such as vehicles and sensors that are deployed in a specific acoustic area to perform collaborative monitoring and data collection tasks. These networks are used interactively between different nodes and ground-based stations. Presently, UWSNs face issues and challenges regarding limited bandwidth, high propagation delay, 3D topology, media access control, routing, resource utilization, and power constraints. In the last few decades, research community provided different methodologies to overcome these issues and challenges; however, some of them are still open for research due to variable characteristics of underwater environment. In this paper, a survey of UWSN regarding underwater communication channel, environmental factors, localization, media access control, routing protocols, and effect of packet size on communication is conducted. We compared presently available methodologies and discussed their pros and cons to highlight new directions of research for further improvement in underwater sensor networks.

201 citations

Journal ArticleDOI
TL;DR: In this paper , the authors explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT, and highlight interesting research challenges and point out potential directions to spur further research in this promising area.
Abstract: The sixth-generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) toward a future of fully intelligent and autonomous systems. In this article, we explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space–air–ground–underwater communications, Terahertz communications, massive ultrareliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely, healthcare IoTs, Vehicular IoTs and Autonomous Driving, Unmanned Aerial Vehicles, Satellite IoTs, and Industrial IoTs. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.

171 citations

Journal ArticleDOI
TL;DR: In this paper, a meta-analysis has been performed and the resulting resources have been critically analyzed, focusing on the use of DL architectures to analyse patterns in data from diverse biological domains.
Abstract: Recent technological advancements in data acquisition tools allowed life scientists to acquire multimodal data from different biological application domains. Categorized in three broad types (i.e. images, signals, and sequences), these data are huge in amount and complex in nature. Mining such enormous amount of data for pattern recognition is a big challenge and requires sophisticated data-intensive machine learning techniques. Artificial neural network-based learning systems are well known for their pattern recognition capabilities, and lately their deep architectures—known as deep learning (DL)—have been successfully applied to solve many complex pattern recognition problems. To investigate how DL—especially its different architectures—has contributed and been utilized in the mining of biological data pertaining to those three types, a meta-analysis has been performed and the resulting resources have been critically analysed. Focusing on the use of DL to analyse patterns in data from diverse biological domains, this work investigates different DL architectures’ applications to these data. This is followed by an exploration of available open access data sources pertaining to the three data types along with popular open-source DL tools applicable to these data. Also, comparative investigations of these tools from qualitative, quantitative, and benchmarking perspectives are provided. Finally, some open research challenges in using DL to mine biological data are outlined and a number of possible future perspectives are put forward.

170 citations

Journal ArticleDOI
TL;DR: The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders.
Abstract: Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.

164 citations