scispace - formally typeset
Search or ask a question
Author

O. Benjamin

Bio: O. Benjamin is an academic researcher from Bell Labs. The author has contributed to research in topics: Signal processing & Filter (signal processing). The author has an hindex of 2, co-authored 2 publications receiving 331 citations.

Papers
More filters
Book ChapterDOI
James C. Candy1, O. Benjamin1
TL;DR: Simple algebraic expressions for this modulation noise and its spectrum in terms of the input amplitude are derived and can be useful for designing oversampled analog to digital converters that use sigma-delta modulation for the primary conversion.
Abstract: When the sampling rate of a sigma-delta modulator far exceeds the frequencies of the input signal, its modulation noise is highly correlated with the amplitude of the input. We derive simple algebraic expressions for this noise and its spectrum in terms of the input amplitude. The results agree with measurements taken on a breadboard circuit. This work can be useful for designing oversampled analog to digital converters that use sigma-delta modulation for the primary conversion.

255 citations

Journal ArticleDOI
TL;DR: Oversampling and digital filtering have been used to design a per-channel voiceband codec with resolution that exceeds the typical transmission system requirement by more than 15 dB and the response of the codec is described mathematically and the results are confirmed by measurements of experimental breadboard models.
Abstract: Oversampling and digital filtering have been used to design a per-channel voiceband codec with resolution that exceeds the typical transmission system requirement by more than 15 dB. This extended dynamic range will allow for the use of digital processing in the management of signal levels and system characteristics in many telecommunication applications. Digital filtering contained in the codec provides rejection of out-of-band inputs and smoothing of the analog output that is sufficient to eliminate the need for analog filtering in most telephone applications. Some analog filtering may be required only to maintain the expanded dynamic range in cases where there is a danger of large amounts of out-of-band energy on the analog input impairing the dynamic range of the modulator. The encoder portion of the oversampled codec comprises an interpolating modulator that samples at 256 kHz followed by digital filtering that produces a 16-bit PCM code at a sample rate of 8 kHz. In the decoder, digital processing is used to raise the sampling rate to 1 MHz prior to demodulation in a 17-level interpolating demodulator. The circuits in the codec are designed to be suitable for large-scale integration. Component matching tolerances required in the analog circuits are of the order of only ± 1 percent, While the digital circuits can be implemented with fewer than 5000 gates with delays on the order of 0.1 μs. In this paper the response of the codec is described mathematically and the results are confirmed by measurements of experimental breadboard models.

79 citations


Cited by
More filters
Book
08 Nov 2004
TL;DR: This chapter discusses the design and simulation of delta-sigma modulator systems, and some of the considerations for implementation considerations for [Delta][Sigma] ADCs.
Abstract: Chapter 1: Introduction.Chapter 2: The first-order delta-sigma modulator.Chapter 3: The second-order delta-sigma modulator.Chapter 4: Higher-order delta-sigma modulation.Chapter 5: Bandpass and quadrature delta-sigma modulation.Chapter 6: Implementation considerations for [Delta][Sigma] ADCs.Chapter 7: Delta-sigma DACs.Chapter 8: High-level design and simulation.Chapter 9: Example modulator systems.Appendix A: Spectral estimation.Appendix B: The delta-sigma toolbox.Appendix C: Noise in switched-capacitor delta-sigma data converters.

2,200 citations

Journal ArticleDOI
TL;DR: The key to a successful quantization is the selection of an error criterion – such as entropy and signal-to-noise ratio – and the development of optimal quantizers for this criterion.
Abstract: Quantization is a process that maps a continous or discrete set of values into approximations that belong to a smaller set. Quantization is a lossy: some information about the original data is lost in the process. The key to a successful quantization is therefore the selection of an error criterion – such as entropy and signal-to-noise ratio – and the development of optimal quantizers for this criterion.

1,574 citations

Journal ArticleDOI
TL;DR: The author examines the practical design criteria for implementing oversampled analog/digital converters based on second-order sigma-delta ( Sigma Delta ) modulation and applies these criteria to the design of a modulator that has been integrated in a 3- mu m CMOS technology.
Abstract: The author examines the practical design criteria for implementing oversampled analog/digital converters based on second-order sigma-delta ( Sigma Delta ) modulation. Behavioral models that include representation of various circuit impairments are established for each of the functional building blocks comprising a second-order Sigma 2gD modulator. Extensive simulations based on these models are then used to establish the major design criteria for each of the building blocks. As an example, these criteria are applied to the design of a modulator that has been integrated in a 3- mu m CMOS technology. An experimental prototype operates from a single 5-V supply, dissipates 12 mW, occupies an area of 0.77 mm/sup 2/, and has achieved a measured dynamic range of 89 dB. >

779 citations

Journal ArticleDOI
TL;DR: This article describes conventional A/D conversion, as well as its performance modeling, and examines the use of sigma-delta converters to convert narrowband bandpass signals with high resolution.
Abstract: Using sigma-delta A/D methods, high resolution can be obtained for only low to medium signal bandwidths. This article describes conventional A/D conversion, as well as its performance modeling. We then look at the technique of oversampling, which can be used to improve the resolution of classical A/D methods. We discuss how sigma-delta converters use the technique of noise shaping in addition to oversampling to allow high resolution conversion of relatively low bandwidth signals. We examine the use of sigma-delta converters to convert narrowband bandpass signals with high resolution. Several parallel sigma-delta converters, which offer the potential of extending high resolution conversion to signals with higher bandwidths, are also described.

680 citations

Journal ArticleDOI
James C. Candy1
TL;DR: A modulator that employs double integration and two-level quantization is easy to implement and is tolerant of parameter variation.
Abstract: Sigma delta modulation is viewed as a technique that employs integration and feedback to move quantization noise out of baseband. This technique may be iterated by placing feedback loop around feedback loop, but when three or more loops are used the circuit can latch into undesirable overloading modes. In the desired mode, a simple linear theory gives a good description of the modulation even when the quantization has only two levels. A modulator that employs double integration and two-level quantization is easy to implement and is tolerant of parameter variation. At sampling rates of 1 MHz it provides resolution equivalent to 16 bit PCM for voiceband signals. Digital filters that are suitable for converting the modulation to PCM are also described.

608 citations