scispace - formally typeset
Search or ask a question
Author

O. C. Zienkiewicz

Other affiliations: University of Edinburgh, Park University, University of Wales  ...read more
Bio: O. C. Zienkiewicz is an academic researcher from Swansea University. The author has contributed to research in topics: Finite element method & Mixed finite element method. The author has an hindex of 107, co-authored 455 publications receiving 71204 citations. Previous affiliations of O. C. Zienkiewicz include University of Edinburgh & Park University.


Papers
More filters
Book
01 Jan 1989
TL;DR: In this article, the methodes are numeriques and the fonction de forme reference record created on 2005-11-18, modified on 2016-08-08.
Abstract: Keywords: methodes : numeriques ; fonction de forme Reference Record created on 2005-11-18, modified on 2016-08-08

17,327 citations

Book
01 Jan 1971
TL;DR: In this paper, the authors describe how people search numerous times for their favorite books like this the finite element method in engineering science, but end up in malicious downloads, and instead they cope with some infectious bugs inside their computer.
Abstract: Thank you very much for downloading the finite element method in engineering science. Maybe you have knowledge that, people have search numerous times for their favorite books like this the finite element method in engineering science, but end up in malicious downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they cope with some infectious bugs inside their computer.

3,688 citations

Book
01 Jan 2005
TL;DR: The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications.
Abstract: The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: * Weak forms * Variational forms * Multi-dimensional field problems * Automatic mesh generation * Plate bending and shells * Developments in meshless techniques Focusing on the core knowledge, mathematical and analytical tools needed for successful application, The Finite Element Method: Its Basis and Fundamentals is the authoritative resource of choice for graduate level students, researchers and professional engineers involved in finite element-based engineering analysis. * A proven keystone reference in the library of any engineer needing to understand and apply the finite element method in design and development. * Founded by an influential pioneer in the field and updated in this seventh edition by an author team incorporating academic authority and industrial simulation experience. * Features reworked and reordered contents for clearer development of the theory, plus new chapters and sections on mesh generation, plate bending, shells, weak forms and variational forms.

2,936 citations

Journal ArticleDOI
TL;DR: A new error estimator is presented which is not only reasonably accurate but whose evaluation is computationally so simple that it can be readily implemented in existing finite element codes.
Abstract: A new error estimator is presented which is not only reasonably accurate but whose evaluation is computationally so simple that it can be readily implemented in existing finite element codes. The estimator allows the global energy norm error to be well estmated and alos gives a good evaluation of local errors. It can thus be combined with a full adaptive process of refinement or, more simply, provide guidance for mesh redesign which allows the user to obtain a desired accuracy with one or two trials. When combined with an automatic mesh generator a very efficient guidance process to analysis is avaiable. Estimates other than the energy norm have successfully been applied giving, for instance, a predetermined accuracy of stresses.

2,449 citations

Journal ArticleDOI
TL;DR: In this article, a general recovery technique is developed for determining the derivatives (stresses) of the finite element solutions at nodes, which has been tested for a group of widely used linear, quadratic and cubic elements for both one and two dimensional problems.
Abstract: This is the first of two papers concerning superconvergent recovery techniques and a posteriori error estimation. In this paper, a general recovery technique is developed for determining the derivatives (stresses) of the finite element solutions at nodes. The implementation of the recovery technique is simple and cost effective. The technique has been tested for a group of widely used linear, quadratic and cubic elements for both one and two dimensional problems. Numerical experiments demonstrate that the recovered nodal values of the derivatives with linear and cubic elements are superconvergent. One order higher accuracy is achieved by the procedure with linear and cubic elements but two order higher accuracy is achieved for the derivatives with quadratic elements. In particular, an O(h4) convergence of the nodal values of the derivatives for a quadratic triangular element is reported for the first time. The performance of the proposed technique is compared with the widely used smoothing procedure of global L2 projection and other methods. It is found that the derivatives recovered at interelement nodes, by using L2 projection, are also superconvergent for linear elements but not for quadratic elements. Numerical experiments on the convergence of the recovered solutions in the energy norm are also presented. Higher rates of convergence are again observed. The results presented in this part of the paper indicate clearly that a new, powerful and economical process is now available which should supersede the currently used post-processing procedures applied in most codes.

1,993 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a new finite element formulation for convection dominated flows is developed, based on the streamline upwind concept, which provides an accurate multidimensional generalization of optimal one-dimensional upwind schemes.

5,157 citations

Journal ArticleDOI
TL;DR: In this paper, the electric field integral equation (EFIE) is used with the moment method to develop a simple and efficient numerical procedure for treating problems of scattering by arbitrarily shaped objects.
Abstract: The electric field integral equation (EFIE) is used with the moment method to develop a simple and efficient numerical procedure for treating problems of scattering by arbitrarily shaped objects. For numerical purposes, the objects are modeled using planar triangular surfaces patches. Because the EFIE formulation is used, the procedure is applicable to both open and closed surfaces. Crucial to the numerical formulation is the development of a set of special subdomain-type basis functions which are defined on pairs of adjacent triangular patches and yield a current representation free of line or point charges at subdomain boundaries. The method is applied to the scattering problems of a plane wave illuminated flat square plate, bent square plate, circular disk, and sphere. Excellent correspondence between the surface current computed via the present method and that obtained via earlier approaches or exact formulations is demonstrated in each case.

4,835 citations

Journal ArticleDOI
TL;DR: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high energy storage density and the isothermal nature of the storage process.
Abstract: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCMs have been widely used in latent heat thermal-storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. The uses of PCMs for heating and cooling applications for buildings have been investigated within the past decade. There are large numbers of PCMs that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also summarizes the investigation and analysis of the available thermal energy storage systems incorporating PCMs for use in different applications.

4,482 citations

Journal ArticleDOI
TL;DR: In this paper, a convective modeling procedure is presented which avoids the stability problems of central differencing while remaining free of the inaccuracies of numerical diffusion associated with upstream differencings.

4,190 citations