scispace - formally typeset
O

O. Mena

Researcher at Autonomous University of Barcelona

Publications -  36
Citations -  2903

O. Mena is an academic researcher from Autonomous University of Barcelona. The author has contributed to research in topics: Neutrino & Deep Underground Neutrino Experiment. The author has an hindex of 21, co-authored 36 publications receiving 2459 citations.

Papers
More filters
Posted Content

Light Sterile Neutrinos: A White Paper

Kevork N. Abazajian, +186 more
TL;DR: In this article, the authors address the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data, and propose a white paper addressing this hypothesis.
Journal Article

Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

R. Acciarri, +794 more
TL;DR: In this paper, the physics program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neurtrino Facility (LBNF) is described.

Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) : 2: The Physics Program for DUNE at LBNF

R. Acciarri, +800 more
TL;DR: In this paper, the physics program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neurtrino Facility (LBNF) is described.

Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE)

R. Acciarri, +800 more
TL;DR: The conceptual design report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the LBNF/DUNE is presented in this article.
ReportDOI

Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

B. Abi, +959 more
TL;DR: The Dune experiment as discussed by the authors is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model.