scispace - formally typeset
Search or ask a question
Author

O.N Pugachev

Bio: O.N Pugachev is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Restriction enzyme & Restriction fragment length polymorphism. The author has an hindex of 1, co-authored 1 publications receiving 275 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The polymorphisms obtained by restriction fragment length polymorphisms have provided a new set of genetic markers for the accurate identification of sibling species and morphospecies.

297 citations


Cited by
More filters
Book ChapterDOI
TL;DR: Examples in which anisakid nematodes recognized genetically at the species level in definitive and intermediate/paratenic hosts from various geographical areas of the Boreal and Austral regions and their infection levels have been used as biological indicators of fish stocks and food-web integrity in areas at high versus low levels of habitat disturbance are presented.
Abstract: The application of molecular systematics to the anisakid nematodes of the genera Anisakis, Pseudoterranova and Contracaecum, parasites of aquatic organisms, over the last two decades, has advanced the understanding of their systematics, taxonomy, ecology and phylogeny substantially Here the results of this effort on this group of species from the early genetic works to the current status of their revised taxonomy, ecology and evolutionary aspects are reviewed for each of three parasitic groups It has been shown that many anisakid morphospecies of Anisakis, Contracaecum and Pseudoterranova include a certain number of sibling species Molecular genetic markers provided a rapid, precise means to screen and identify several species that serve as definitive and intermediate and or/paratenic hosts of the so far genetically characterized species Patterns of differential distribution of anisakid nematodes in various definitive and intermediate hosts are presented Differences in the life history of related species can be due both to differential host-parasite co-adaptation and co-evolution, and/or to interspecific competition, that can reduce the range of potential hosts in sympatric conditions Phylogenetic hypotheses attempted for anisakid nematodes and the possible evolutionary scenarios that have been proposed inferred from molecular data, also with respect to the phylogeny of their hosts are presented for the parasite-host associations Anisakis-cetaceans and Contracaecum-pinnipeds, showing that codivergence and host-switching events could have accompanied the evolution of these groups of parasites Finally, examples in which anisakid nematodes recognized genetically at the species level in definitive and intermediate/paratenic hosts from various geographical areas of the Boreal and Austral regions and their infection levels have been used as biological indicators of fish stocks and food-web integrity in areas at high versus low levels of habitat disturbance (pollution, overfishing, by-catch) are presented

402 citations

Journal ArticleDOI
01 Jun 2006-Parasite
TL;DR: Preliminary data for reconstruction of a possible co-evolutionary scenario between cetacean hosts and their Anisakis endoparasites suggests that cospeciation and host-switching events may have accompanied the evolution of this group of parasites.
Abstract: Advances in the taxonomy and ecological aspects concerning geographical distribution and hosts of the so far genetically recognised nine taxa of the nematodes belonging to genus Anisakis (i.e. A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A. ziphidarum, Anisakis sp., A. physeteris, A. brevispiculata and A. paggiae) are here summarized. Genetic differentiation and phylogenetic relationships inferred from allozyme (20 enzyme-loci) and mitochondrial (sequences of cox-2 gene) markers, are revised and compared. The two genetic analyses are congruent in depicting their phylogenetic relationships. Two main clusters are showed to exist in the obtained trees, one encompassing the species A. pegreffii, A. simplex s.s., A. simplex C, A. typica, A. ziphidarum and Anisakis sp.; while, the second including A. physeteris, A. brevispiculata and A. paggiae. The existence of two clades is also supported by their morphological differentiation in adult and larval morphology. Comparison of phylogenetic relationships among Anisakis spp. with those currently available for their cetacean definitive hosts suggests parallelism between host and parasite phylogenetic tree topologies. Preliminary data for reconstruction of a possible co-evolutionary scenario between cetacean hosts and their Anisakis endoparasites suggests that cospeciation and host-switching events may have accompanied the evolution of this group of parasites. Finally, genetic/molecular markers for the identification of the so far genetically recognized taxa of Anisakis at any life-stage and both sexes were given also in relation to human anisakiosis is discussed.

202 citations

Journal ArticleDOI
TL;DR: Phylogenetic analyses based upon Parsimony and Bayesian Inference, as well as phenetic analysis based upon Neighbor-Joining p-distance values, generated similar tree topologies, each well supported at major nodes.
Abstract: The genetic relationships among 9 taxa of Anisakis Dujardin, 1845 (A. simplex (sensu stricto), A. pegreffii, A. simplex C., A. typica, A. ziphidarum, A. physeteris, A. brevispiculata, A. paggiae, and Anisakis sp.) were inferred from sequence analysis (629 bp) of the mitochondrial cox2 gene. Genetic divergence among the considered taxa, estimated by p-distance, ranged from p = 0.055, between sibling species of the A. simplex complex, to p = 0.12, between morphologically differentiated species, i.e., A. ziphidarum and A. typica. The highest level was detected when comparing A. physeteris, A. brevispiculata, and A. paggiae versus A. simplex complex (on average p = 0.13) or versus A. typica (on average p = 0.14). Sequence data from the newly identified Anisakis sp. poorly aligned with other Anisakis species but was most similar to A. ziphidarum (p = 0.08). Phylogenetic analyses based upon Parsimony and Bayesian Inference, as well as phenetic analysis based upon Neighbor-Joining p-distance values, generated similar tree topologies, each well supported at major nodes. All analyses delineated two main claides, the first encompassing A. physeteris, A. brevispiculata, and A. paggiae as a sister group to all the remaining species, and the second comprising the species of the A. simplex complex (A. simplex (s.s.), A. pegreffii and A. simplex C), A. typica, A. ziphidarum, and Anisakis sp. In general, mtDNA-based tree topologies showed high congruence with those generated from nuclear data sets (19 enzyme-loci) and with morphological data delineating adult and larval stages of the Anisakis spp.; however, precise positioning of A. typica and A. ziphidarum remain poorly resolved, though they consistently clustered in the same clade as Anisakis sp. and the A. simplex complex. Comparison of anisakid data with those currently available for their cetacean-definitive hosts suggests parallelism between host and parasite phylogenetic tree topologies.

159 citations

Book ChapterDOI
TL;DR: This review addresses the biodiversity, biology, distribution, ecology, epidemiology, and consumer health significance of the so far known species of Anisakis, both in their natural hosts and in human accidental host populations, worldwide.
Abstract: This review addresses the biodiversity, biology, distribution, ecology, epidemiology, and consumer health significance of the so far known species of Anisakis, both in their natural hosts and in human accidental host populations, worldwide. These key aspects of the Anisakis species' biology are highlighted, since we consider them as main driving forces behind which most of the research in this field has been carried out over the past decade. From a public health perspective, the human disease caused by Anisakis species (anisakiasis) appears to be considerably underreported and underestimated in many countries or regions around the globe. Indeed, when considering the importance of marine fish species as part of the everyday diet in many coastal communities around the globe, there still exist significant knowledge gaps as to local epidemiological and ecological drivers of the transmission of Anisakis spp. to humans. We further identify some key knowledge gaps related to Anisakis species epidemiology in both natural and accidental hosts, to be filled in light of new 'omic' technologies yet to be fully developed. Moreover, we suggest that future Anisakis research takes a 'holistic' approach by integrating genetic, ecological, immunobiological, and environmental factors, thus allowing proper assessment of the epidemiology of Anisakis spp. in their natural hosts, in human populations, and in the marine ecosystem, in both space and time.

158 citations

Journal ArticleDOI
TL;DR: Phylogenetic analysis of LSU sequences revealed strong support for the monophyly of Anisakinae, Contracaecum plus Phocascaris, Pseudoterranova, and Anisakis, which is primarily consistent with previously published phenograms based on multilocus electrophoretic data.
Abstract: Individual specimens of Anisakis, Pseudoterranova, and Contracaecum collected from marine mammals inhabiting northern Pacific waters were used for comparative diagnostic and molecular phylogenetic analyses. Forty-eight new sequences were obtained for this study of 14 Anisakis taxa, 8 Pseudoterranova taxa, 4 Contracaecum taxa, and 4 outgroup species. Partial 28S (LSU) and complete internal transcribed spacer (ITS-1, 5.8S, ITS-2) ribosomal DNA was amplified by the polymerase chain reaction and sequenced. Sequences of ITS indicated that Pseudoterranova specimens from Zalophus californianus (California sea lion), Mirounga angustirostris (northern elephant seal), Phoca vitulina (harbor seal), Enhydra lutris (sea otter), and Eumetopias jubatus (Steller's sea lion) exactly matched P. decipiens s. str., extending the host and geographic range of this species. Anisakis from northern Pacific marine mammals were most closely related to members of the A. simplex species complex. Comparison of Anisakis ITS sequences diagnosed the presence of A. simplex C in 2 M. angustirostris hosts, which is a new host record. Anisakis specimens from Phocoena phocoena (harbor porpoise), Lissodelphis borealis (Pacific rightwhale porpoise), and E. jubatus included 3 ITS sequences that did not match any known species. Contracaecum adults obtained from Z. californianus were most closely related to C. ogmorhini s.l. and C. rudolphii, but ITS sequences of these Contracaecum specimens did not match C. ogmorhini s. str. or C. margolisi. These novel Anisakis and Contracaecum ITS sequences may represent previously uncharacterized species. Phylogenetic analysis of LSU sequences revealed strong support for the monophyly of Anisakinae, Contracaecum plus Phocascaris, Pseudoterranova, and Anisakis. Phylogenetic trees inferred from ITS sequences yielded robustly supported relationships for Pseudoterranova and Anisakis species that are primarily consistent with previously published phenograms based on multilocus electrophoretic data.

145 citations