scispace - formally typeset
Search or ask a question
Author

O Ringdén

Other affiliations: Karolinska University Hospital
Bio: O Ringdén is an academic researcher from Karolinska Institutet. The author has contributed to research in topics: Transplantation & Bone marrow. The author has an hindex of 60, co-authored 211 publications receiving 11946 citations. Previous affiliations of O Ringdén include Karolinska University Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: MSC added to PBL cultures had various effects, ranging from slight inhibition to stimulation of DNA synthesis, which was not affected by the MSC dose or by the addition of allogeneic or autologous MSCs to the lymphocytes.
Abstract: We aimed to study the effects of mesenchymal stem cells (MSCs) on alloreactivity and effects of T-cell activation on human peripheral blood lymphocytes (PBLs) in vitro. MSCs were expanded from the bone marrow of healthy subjects. MSCs isolated from second to third passage were positive for CD166, CD105, CD44, CD29, SH-3 and SH-4, but negative for CD34 and CD45. MSCs cultured in osteogenic, adipogenic or chondrogenic media differentiated, respectively, into osteocytes, adipocytes or chondrocytes. MSC added to PBL cultures had various effects, ranging from slight inhibition to stimulation of DNA synthesis. The stimulation index (SI = (PBL + MSC)/PBL) varied between 0.2 and 7.3. The SI was not affected by the MSC dose or by the addition of allogeneic or autologous MSCs to the lymphocytes. Suppression of proliferative activity was observed in all experiments after the addition of 10,000-40,000 MSCs to mixed lymphocyte cultures (MLCs). Lymphocyte proliferation was 10-90%, compared with a control MLC run in parallel without MSCs. In contrast, the addition of fewer MSCs (10-1000 cells) led to a less consistent suppression or a marked lymphocyte proliferation in several experiments, ranging from 40 to 190% of the maximal lymphocyte proliferation in control MLCs. The ability to inhibit or stimulate T-cell alloresponses appeared to be independent of the major histocompatibility complex, as results were similar using 'third party' MSCs or MSCs that were autologous to the responder or stimulating PBLs. The strongest inhibitory effect was seen if MSCs were added at the beginning of the 6 day culture, and the effect declined if MSCs were added on day 3 or 5. Marked inhibitory effects of allogeneic and autologous MSCs (15,000) were also noted after mitogenic lymphocyte stimulation by phytohaemagglutinin (median lymphocyte proliferation of 30% of controls), Concanavalin A (56%) and protein A (65%). Little, if any, inhibition occurred after stimulation with pokeweed mitogen. Low numbers of MSCs (150 cells) were unable to inhibit mitogen-induced T-cell responses. MSCs have significant immune modulatory effects on MLCs and after mitogenic stimulation of PBL. High numbers of MSCs suppress alloreactive T cells, whereas very low numbers clearly stimulated lymphocyte proliferation in some experiments. The effect of a larger number of MSCs on MLCs seems more dependent on cell dose than histocompatibility and could result from an 'overload' of a stimulatory mechanism.

1,379 citations

Journal ArticleDOI
TL;DR: It is concluded that MSCs appear to mediate their function through a “hit and run” mechanism, and the lack of sustained engraftment limits the long‐term risks of MSC therapy.
Abstract: Mesenchymal stromal cells (MSCs) are explored as a novel treatment for a variety of medical conditions. Their fate after infusion is unclear, and long-term safety regarding malignant transformation and ectopic tissue formation has not been addressed in patients. We examined autopsy material from 18 patients who had received human leukocyte antigen (HLA)-mismatched MSCs, and 108 tissue samples from 15 patients were examined by PCR. No signs of ectopic tissue formation or malignant tumors of MSC-donor origin were found on macroscopic or histological examination. MSC donor DNA was detected in one or several tissues including lungs, lymph nodes, and intestine in eight patients at levels from 1/100 to <1/1,000. Detection of MSC donor DNA was negatively correlated with time from infusion to sample collection, as DNA was detected from nine of 13 MSC infusions given within 50 days before sampling but from only two of eight infusions given earlier. There was no correlation between MSC engraftment and treatment response. We conclude that MSCs appear to mediate their function through a "hit and run" mechanism. The lack of sustained engraftment limits the long-term risks of MSC therapy.

479 citations

Journal ArticleDOI
TL;DR: Human MSC suppress proliferation of both CD4+ and CD8+ lymphocyte and decrease the expression of activation markers, when lymphocytes were activated in the presence of MSC.
Abstract: Mesenchymal stem cells (MSC) are immunomodulatory and inhibit lymphocyte proliferation. We studied surface expression of lymphocyte activation markers and secreted cytokines, when lymphocytes were activated in the presence of MSC. MSC suppressed the proliferation of phytohaemagglutinin (PHA)-stimulated CD3+, CD4+ and CD8+ lymphocytes. MSC significantly reduced the expression of activation markers CD25, CD38 and CD69 on PHA-stimulated lymphocytes. Mixed lymphocyte culture (MLC) supernatants containing MSC suppressed proliferation of MLC and PHA-stimulated lymphocytes dose-dependently. MSC secrete osteoprotegerin (OPG), but not hepatocyte growth factor (HGF) or transforming growth factor-beta (TGF-beta). Stromal-cell-derived factor-1 (SDF-1) is not expressed on the cell surface. A recent report suggested that T-cell suppression by MSC is mediated by HGF and TGF-beta. MSC suppression was not restored by the addition of neutralizing antibodies against SDF-1, OPG, HGF or TGF-beta, alone or in combination. Addition of guanosine to PHA-stimulated lymphocyte cultures containing MSC did not affect lymphocyte proliferation. The immunosuppressive effects of cyclosporine and MSC did not interfere, when present in the cultures of PHA-activated lymphocytes. In summary, human MSC suppress proliferation of both CD4+ and CD8+ lymphocyte and decrease the expression of activation markers.

329 citations

Journal ArticleDOI
TL;DR: The IgG secretion by activated B cells may be stimulated or inhibited by the addition of MSC, depending on the level of stimulation, while for enriched B cells, MSC stimulate B‐cell antibody secretion.
Abstract: Mesenchymal stem cells (MSC) have immunomodulatory effects and inhibit T-cell responses to alloantigens and mitogens in vitro and in vivo. We wanted to examine the effect of MSC on human B cells. MSC stimulated IgG production, measured in an enzyme-linked immunospot (ELIspot) assay in blood and spleen lymphocytes. MSC only induced a low proliferation. When a semipermeable membrane separated MSC and mononuclear cells, the IgG production was stimulated in unfractionated lymphocytes. In contrast, enriched B cells required cell contact with MSC to produce IgG. Co-cultures of MSC and lymphocytes increased IFN-γ production. MSC produce IL-6, and addition of MSC to spleen cells dramatically increased IL-6 levels. After lymphocyte stimulation with lipopolysaccharide (LPS), cytomegalovirus or varicella zoster virus, MSC either stimulated or inhibited IgG response, depending on the level of stimulation by LPS or the viral antigens. Similar results were obtained for enriched B cells. To conclude, MSC stimulate B-cell antibody secretion. The IgG secretion by activated B cells may be stimulated or inhibited by the addition of MSC, depending on the level of stimulation.

288 citations

Journal ArticleDOI
TL;DR: PBPC donors tolerated filgrastim administration and leukapheresis well with the most frequent side-effects being musculoskeletal pain, headache, and mild increases of LDH, AP, Gamma-GT or SGPT; the number of days with restricted activity and of nights spent in hospital was lower in donors of PBPC.
Abstract: In a multicentre trial involving 20 transplant centres from 10 countries haematopoietic stem cells were obtained either from the bone marrow of 33 sibling donors or from the peripheral blood of 33 such donors after administration of filgrastim (10 μg/kg/day). The haematopoietic stem cells were infused into their HLA-identical recipients suffering from acute leukaemias in remission or chronic myeloid leukaemia in chronic phase. PBPC donors tolerated filgrastim administration and leukapheresis well with the most frequent side-effects being musculoskeletal pain, headache, and mild increases of LDH, AP, Gamma-GT or SGPT. Pain and haematoma at the harvest site and mild anaemia were the most frequent complaints of BM donors. Severe or life-threatening complications were not seen with any type of harvest procedure. Time to platelet recovery greater than 20 × 109/l was 15 days (95% confidence interval (CI) 13–16 days) in the PBPCT group and 19 days (CI 16–25) in the BMT group. Time to neutrophil recovery greater than 0.5 × 109/l was 14 days (CI 12–15 days) in the PBPCT group as compared to 15 days (CI 15–16 days) in the BMT group. The numbers of platelet transfusions administered to PBPCT and BMT patients were 12 (range: 1–28) and 10 (range: 3–39), respectively. Sixteen patients (48%) transplanted with bone marrow and 18 patients (54%) transplanted with PBPC developed acute GVHD of grades II–IV; acute GVHD of grades III or IV developed in six (18%) and seven (21%) patients, respectively. Kaplan–Meier plots for transplant-related mortality until day 100 and leukaemia-free survival at a median of 400 days after BMT or PBPCT showed no significant differences. Administration of filgrastim and leukapheresis in normal donors were feasible and well tolerated. The number of days with restricted activity and of nights spent in hospital was lower in donors of PBPC. Transplantation of PBPC to HLA-identical siblings with early leukaemia resulted in earlier platelet engraftment. The incidence of moderate to severe acute GVHD, transplant-related mortality, and leukaemia-free survival did not show striking differences. Further investigation of allogeneic PBPCT as a substitute for allogeneic BMT is warranted.

266 citations


Cited by
More filters
Journal ArticleDOI
15 Feb 2005-Blood
TL;DR: Insight is offered into the interactions between allogeneic MSCs and immune cells and mechanisms likely involved with the in vivo MSC-mediated induction of tolerance that could be therapeutic for reduction of GVHD, rejection, and modulation of inflammation.

4,264 citations

Journal ArticleDOI
19 Mar 2004-Science
TL;DR: There is considerable interest in exploiting the advantages of DDS for in vivo delivery of new drugs derived from proteomics or genomics research and for their use in ligand-targeted therapeutics.
Abstract: Drug delivery systems (DDS) such as lipid- or polymer-based nanoparticles can be designed to improve the pharmacological and therapeutic properties of drugs administered parenterally. Many of the early problems that hindered the clinical applications of particulate DDS have been overcome, with several DDS formulations of anticancer and antifungal drugs now approved for clinical use. Furthermore, there is considerable interest in exploiting the advantages of DDS for in vivo delivery of new drugs derived from proteomics or genomics research and for their use in ligand-targeted therapeutics.

4,162 citations

Journal ArticleDOI
TL;DR: The 2014 NIH consensus maintains the framework of the prior consensus with further refinement based on new evidence, and focuses attention on the causes of organ-specific abnormalities to chronic GVHD.

4,122 citations

Journal ArticleDOI
TL;DR: The targets and mechanisms of M SC-mediated immunomodulation and the possible translation of MSCs to new therapeutic approaches are discussed.
Abstract: Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal stem cells that can be isolated from many adult tissues. They can differentiate into cells of the mesodermal lineage, such as adipocytes, osteocytes and chondrocytes, as well as cells of other embryonic lineages. MSCs can interact with cells of both the innate and adaptive immune systems, leading to the modulation of several effector functions. After in vivo administration, MSCs induce peripheral tolerance and migrate to injured tissues, where they can inhibit the release of pro-inflammatory cytokines and promote the survival of damaged cells. This Review discusses the targets and mechanisms of MSC-mediated immunomodulation and the possible translation of MSCs to new therapeutic approaches.

3,142 citations