scispace - formally typeset
Search or ask a question
Author

O. V. Berlov

Bio: O. V. Berlov is an academic researcher from Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The author has contributed to research in topics: Pollution & Hazardous waste. The author has an hindex of 1, co-authored 1 publications receiving 22 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, numerical models based on the use of Navier-Stokes equations, to determine the velocity field of the wind flow near cars and buildings, and contaminants-transfer equations in the atmosphere were developed.
Abstract: Purpose. The paper highlights the d evelopment of numerical models for prediction of atmospheric pollution in case of burning of the solid rocket propellant in a railway car, situated near the building on railway territory. These models can be used in predicting the effectiveness of neutralization upon the atmosphere protection for this type of accidents. Methodology. To solve this problem the numerical models based on the use of Navier-Stokes equations, to determine the velocity field of the wind flow near cars and buildings, and contaminants-transfer equations in the atmosphere were developed. For the numerical integration of pollutant transport equation was used implicit «change – triangle» difference scheme. When constructing a difference scheme physical and geometric cleavage of the transfer equation is carried out in four steps. Unknown value of pollutant concentration at each step of cleavage is determined by the explicit scheme – the method of «point-to-point computation». For the numerical integration of the Navier-Stokes equations are used implicit difference schemes. When carrying out computing experiment also takes into account: the velocity profile of wind flow; interaction between the building and the wind flow and flame jet of solid rocket propellant; the presence of a railroad car; inside which there is a source of pollution; instability of pollutant emissions. On the basis of constructed numerical models was performed the computer experiment for assessing the level of air pollution at dangerous cargo rail transportation in case of emergency at railway territory.The application calculations for the timely combustion products neutralization of solid rocket propellant were carried out. Findings. The numerical models that let promptly calculate air contamination in case of emergency during solid rocket propellant transportation, as well as calculate the rational parameters of pollutant neutralization process were developed by the researcher. These models can be used for routine calculations of various accident scenarios simulation. Originality. Numerical models were developed; they take into account significant factors, influencing the pollutant dispersion process in the atmosphere. On their base a pollutant neutralization method was offered in emergency situations on the railway transport. Practical value. Efficient numerical models, so called «diagnostic models» were considered for the rapid calculation of the air pollution level and air protection technology in emergency situations, in particular, in the case of railway transportation the solid rocket propellant.

22 citations

Journal ArticleDOI
TL;DR: In this paper , the authors considered some classes of numerical models that were built to predict the consequences of emergencies at industrial enterprises, such as chemical air pollution in case of accidental emissions of toxic substances.
Abstract: The report considers some classes of numerical models that were built to predict the consequences of emergencies at industrial enterprises. The first class of models has been developed to predict chemical air pollution in case of accidental emissions of toxic substances. Modeling is carried out on the basis of the fundamental equations of aerodynamics and mass transfer. Difference splitting schemes are used for the numerical solution of the modeling equations. The second class of numerical models has been developed to assess the risk of chemical injury to people in industrial rooms. The third class of models was developed to assess the risk of injury to people when a shock wave moves. To solve this problem Euler equations were used. The fourth class of models was developed to predict river pollution in case of accident chemical pollution. The fifth class of models was developed to assess the influence of protection barriers to reduce air pollution Computer codes were developed on the base of proposed numerical models.
Journal ArticleDOI
TL;DR: In this article , a two-dimensional mass transfer equation was used to model the process of coal dust distribution from the pile, taking into account the convective and diffusion transport of coal in the atmosphere.
Abstract: Wetting the surface of coal piles is a common method of reducing dust emissions. The problem of modeling air pollution near coal after its wetting is considered. A two-dimensional mass transfer equation was used to model the process of coal dust distribution from the pile. This equation takes into account the convective and diffusion transport of coal dust in the atmosphere. The developed mathematical model takes into account different emission rates of coal dust from different parts of the coal pile. The model takes into account the effect of water evaporation from the coal pile on the rate of intensity of coal dust emission. A potential flow model was used to model the wind flow over the coal pile. Finite-difference splitting schemes have been used for numerical integration of modeling equations. Computer code based on the proposed numerical model has been developed. The developed code can be used to predict the efficiency of wetting coal piles over time. The results of a computational experiment are presented.
Journal ArticleDOI
TL;DR: In this article , the authors developed a 3D numerical model for calculating thermal air pollution and assessing the risk of thermal damage to workers at an industrial site in the case of a fire.
Abstract: Problem statement. The task of prediction for thermal air pollution and assessing the risk of thermal damage to people during a fire at an industrial site is considered. The task is to calculate 3D temperature fields during a fire and, based on this, to assess the risk of thermal damage to people. The purpose of the article. Development of a 3D numerical model for calculating thermal air pollution and assessing the risk of thermal damage to workers at an industrial site in the case of a fire. Methodology. A three-dimensional energy equation was used to model the process of thermal air pollution at an industrial site in the case of a fire. A three-dimensional equation for the velocity potential is used to calculate the air flow velocity field at the industrial site. For the numerical integration of the equation for the velocity potential, the splitting method is used. For the numerical integration of the three-dimensional energy equation, it is split at the differential level into two equations. The first equation describes the spread of temperature due to the movement of air masses. The second equation describes the temperature distribution due to thermal conductivity. For the numerical integration of the first equation, a variable-triangular difference splitting scheme is used. An explicit difference scheme is used for the numerical integration of the second equation. Scientific novelty. A 3D numerical model was created, which allows to quickly calculate the dynamics of the formation of thermal air pollution areas at the industrial site and, based on this information, to predict the risk of thermal damage to people in the work zones at the industrial site. The model is based on the numerical integration of the aerodynamic and heat transfer equations. The model allows to quickly calculate the dynamics of the thermal zones’ formation at the industrial site in the case of a fire. Practical value. The developed model makes it possible to predict the dynamics of changes in temperature fields in the air that occur during a fire at an industrial site. The numerical model can be used to determine zones of intense thermal pollution and assess the risk of thermal damage to workers. Conclusions. On the basis of the developed 3D numerical model, a code was created for conducting a computational experiment. The developed code allows to quickly calculate the dynamics of the formation of thermal air pollution areas at an industrial site during a fire. Based on the received information, the risk of thermal damage to workers is assessed. The results of the computational experiment are presented.
Journal ArticleDOI
TL;DR: In this paper , a numerical multi-parameter model and computer program for evaluating the effectiveness of the protective barriers using near the highway to reduce the chemical contamination level of work areas is developed.
Abstract: Problem statement. The problem of predicting chemical pollution zones near the highway, where protective barriers are located, is considered. The protective barriers influence the aerodynamics of air flow and reduce the level of working areas chemical pollution near the highway. It is necessary to have mathematical models that allow such evaluation at the design stage in order to evaluate the effectiveness of protective barriers promptly. The purpose of the article. Development of a numerical multi-parameter model and computer program for evaluating the effectiveness of the protective barriers using near the highway to reduce the chemical contamination level of work areas. Methodology. A two-dimensional mass transfer equation is used for mathematical modeling of chemical hazardous substances spreading that are emitted from a car and spread near the highway. This simulation equation takes into account the wind direction, atmospheric diffusion, the intensity of chemically hazardous substance emission from the car, the emission source location, the car body and the location of protective barriers near the highway. The Navier − Stokes equation and the potential motion model both are used to solve the aerodynamics problem of determining the uneven air velocity field near the highway. An implicit splitting difference scheme is used to numerically integrate the vortex transfer equation. Two numerical schemes are used to numerically integrate the equation for the current function. An explicit difference scheme is used to numerically integrate the Laplace equation for the velocity potential. Based on the constructed numerical model the package of programs is developed. To solve numerically equation of pollutant transfer the finite difference schemes of splitting are used. Scientific novelty. To calculate the formation of chemical pollution areas for atmospheric air near the highway during emissions from vehicles numerical model is proposed. This model allow to estimate the protective barriers effectiveness for reducing air pollution in the working areas. Practical significance. Based on the developed model the code for quickly calculation of air pollution process both near the highway and in work areas protecting with barriers is created. Conclusions. The developed numerical model and the computer code implementing it allow to investigate the process of chemical hazardous substance spreading in the atmospheric air near the highway. The model allows to quickly determine the effectiveness of protective barriers using near the highway. The developed computer program can be implemented on low and medium power computers. The results of a computational experiment are presented.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a 3D model of 3D-based 3D models of the human body and show how it can be used in 3D modeling, showing how the body can be transformed into 3D objects.
Abstract: Цель . Научная работа предполагает: 1) разработку 3 D численных моделей, которые позволяют рассчитывать процесс загрязнения атмосферного воздуха выбросами автотранспорта; 2) создание моделей, которые давали бы возможность прогнозировать уровень загрязнения атмосферного воздуха в условиях городской застройки. Методика. Для решения задачи по оценке уровня загрязнения атмосферного воздуха выбросами автотранспорта используются фундаментальные уравнения аэродинамики и массопереноса. Для решения дифференциальных уравнений аэродинамики и массопереноса используются конечно-разностные методы. Для численного интегрирования уравнения потенциала скорости применяется метод условной аппроксимации. Уравнение для потенциала скорости, записанное в разностном виде, расщепляется на два уравнения, причем на каждом шаге расщепления неизвестное значение потенциала скорости определяется по явной схеме бегущего счета, при этом сама разностная схема – неявная. Для численного интегрирования уравнения рассеивания выбросов в атмосфере применяется неявная попеременно-треугольная разностная схема расщепления. Выбросы от автотрассы моделируются серией точечных источников заданной интенсивности. Разработанные численные модели составляют основу созданного пакета прикладных программ. Результаты. Разработаны 3 D численные модели, которые относятся к классу « diagnostic models ». Данные модели учитывают основные физические факторы, влияющие на процесс рассеивания вредных веществ в атмосфере при выбросах от автотранспорта в городе. На основе построенных численных моделей проведен вычислительный эксперимент по оценке уровня загрязнения воздушной среды на улице. Научная новизна. Авторами разработаны численные модели, которые позволяют рассчитать 3 D аэродинамику ветрового потока в условиях городской застройки и процесс массопереноса выбросов от автотрассы. Выполнены расчеты по определению зоны загрязнения, которая формируется возле зданий, расположенных вдоль автомагистрали. Практическая значимость. В работе рассмотрены эффективные численные модели, которые могут быть применены при разработке мероприятий по охране окружающей среды при эксплуатации автомобильного транспорта в городе. Разработанные модели позволяют оценить размеры, форму и интенсивность зоны загрязнения возле автомагистрали.

4 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a code that can be used to quickly simulate the temperature fields formation in the shop in case of emergency burning of solid rocket propellant and to identify potential areas of thermal damages to workers based on this information.
Abstract: Purpose. This work includes the development of a computer model to calculate the risk of thermal damage to people in the shop in case of emergency burning of solid rocket propellant. Methodology. To calculate the temperature field in the shop in order to determine the zones of thermal damage to workers in the building, the equation expressing the law of energy conservation was used. Based on this modeling equation, the temperature field in the shop is calculated in the presence of a source of heat emission – burning solid rocket propellant. To calculate the velocity field of air flow in the shop, taking into account the location of obstacles in the path of heat wave propagation, we used the model of vortex-free air motion – the equation of the velocity potential. A two-step finite difference scheme of conditional approximation is used to numerically solve the equation for the velocity potential. A difference splitting scheme was used to numerically solve the energy equation. At the first stage of construction of the difference splitting scheme of the two-dimensional energy equation into the system of one-dimensional equations is performed. Each one-dimensional equation allows you to calculate the temperature change in one coordinate direction. The point-to-point computation scheme is used to determine the temperature. When conducting a computational experiment, the air exchange in the building is taken into account. The risk assessment of thermal damage to personnel in the building is performed for different probabilities of the place of emergency combustion of solid rocket propellant. Findings. Using numerical model prediction of the potential risk areas of thermal damage to staff in the shop for a variety of emergency situations was performed. Originality. A computer model for rapid assessment of the potential risk of damage to people in the shop in case of emergency burning of solid rocket propellant was constructed. Practical value. The authors developed a code that allows you to quickly simulate the temperature fields formation in the shop in case of emergency burning of solid rocket propellant and to identify potential areas of thermal damages to workers based on this information. The developed computer program can be used to assess the risk of thermal damage in the chemical industry in case of emergency.

3 citations

Journal ArticleDOI
TL;DR: Amelina and Cherednychenko as mentioned in this paper were the first to report their findings, with ORCID 0000-0002-8525-7096; M.L. Biliaiev and O. Berlov reporting ORCIDs 0000-0001-1457-9282.
Abstract: L. Amelina: ORCID 0000-0002-8525-7096; M. Biliaiev: ORCID 0000-0002-1531-7882; O. Berlov: ORCID 0000-0002-7442-0548; L. Cherednychenko: ORCID 0000-0002-1457-9282

3 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a 3D-based 3D model of the world in 3D and show how it can be used in the context of virtual reality games.
Abstract: Цель. Научная работа предполагает разработку 3 D -численных моделей, которые позволят рассчитывать процесс загрязнения атмосферного воздуха выбросами автотранспорта с учетом химической трансформации вредных веществ. Также необходимо рассмотреть создание численных моделей, которые давали бы возможность прогнозировать уровень загрязнения атмосферного воздуха в условиях городской застройки. Методика. Для решения задачи по оценке уровня загрязнения атмосферного воздуха выбросами автотранспорта задействованы уравнения аэродинамики и массопереноса. Для решения дифференциальных уравнений аэродинамики и массопереноса используются конечно-разностные методы. Для численного интегрирования уравнения потенциала скорости применяется метод условной аппроксимации. Уравнение для потенциала скорости, записанное в разностном виде, разделяется на два уравнения, причем на каждом шаге разделения неизвестное значение потенциала скорости определяется по явной схеме бегущего счета, при этом сама разностная схема – неявная. Для численного интегрирования уравнения рассеивания выбросов в атмосфере применяется неявная попеременно-треугольная разностная схема расщепления. Выбросы от автотрассы моделируются серией точечных источников заданной интенсивности. Разработанные численные модели составляют основу созданного пакета прикладных программ. Результаты. Авторами созданы 3 D -численные модели, которые относятся к классу « diagnostic models ». Данные модели учитывают основные физические факторы, влияющие на процесс рассеивания вредных веществ в атмосфере при выбросах от автотранспорта с учетом химической трансформации вредных веществ. На основе построенных численных моделей проведен вычислительный эксперимент по оценке уровня загрязнения воздушной среды на улице. Научная новизна. Разработаны численные модели, которые позволяют рассчитать 3D аэродинамику ветрового потока в условиях городской застройки и процесс массопереноса выбросов от автотрассы. Модели позволяют учитывать химическую трансформацию выбросов в атмосфере. Выполнены расчеты по определению зоны загрязнения, которая формируется возле зданий, расположенных вдоль автомагистрали. Практическая значимость. Рассмотрены эффективные численные модели, которые могут быть применены при разработке мероприятий по охране окружающей среды при эксплуатации автомобильного транспорта в городе. Разработанные модели позволяют оценить размеры, форму и интенсивность зоны загрязнения возле автомагистрали.

2 citations