scispace - formally typeset
Search or ask a question
Author

O. V. Buganov

Bio: O. V. Buganov is an academic researcher from National Academy of Sciences of Belarus. The author has contributed to research in topics: Absorption spectroscopy & Quantum dot. The author has an hindex of 7, co-authored 32 publications receiving 205 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: First direct experimental results about photoinduced TICT-state formation for Thioflavin T (ThT) confirm the earlier proposed model that twisted internal charge transfer process takes place in the excited state of the dye and that ThT behaves as a molecular rotor.
Abstract: Here we provide first direct experimental results about photoinduced TICT-state formation for Thioflavin T (ThT). In this work, femtosecond transient absorption spectra dynamics for ThT, dissolved in low-viscosity solvents (water, ethanol, 2-propanol, butanol) was investigated. It was found that decay lifetime of fluorescent LE-state for ThT in low-viscous solvents does not exceed 12 ps, and its value correlates well with rising time of the absorption band at 470 nm. It indicates that LE-state of ThT initially formed upon photoexcitation is quite rapidly converted to a transient state characterized by absorption at 470 nm. We associate this emerging intermediate state with nonfluorescent TICT-state of the dye. Rate of LE --> TICT process significantly depends on viscosity and is comparable to the rate of solvent relaxation resulting in time-dependent Stokes shift of ThT stimulated emission band. TICT-state deactivation was found to be also viscosity dependent and its lifetime changed from 3.8 +/- 0.1 ps (in H(2)O) to 360 +/- 60 ps (in butanol). It was proposed that a nonradiative deactivation process proceeds through a conical intersection between TICT(S(1)') and S(0) energy levels. The results obtained confirm the earlier proposed model that twisted internal charge transfer process takes place in the excited state of the dye and that ThT behaves as a molecular rotor (Stsiapura, V. I.; Maskevich, A. A.; Kuzmitsky, V. A.; Uversky, V. N.; Kuznetsova, I. M.; Turoverov, K. K. J. Phys. Chem. B 2008, 112, 15893-15902).

95 citations

Journal ArticleDOI
TL;DR: In this paper, the decay of electronic excitations in colloidal quantum dots of this type is predominantly related to a fast localization of nonequilibrium charge carriers on surface defects and their subsequent recombination during times on the order of units and tens of picoseconds.
Abstract: Using the spectral methods of induced absorption, luminescence, and photostimulated luminescence flash, we have experimentally investigated processes of decay of electronic excitations in CdS colloidal quantum dots and in CdS/ZnS “core-shell” systems synthesized in gelatin by the sol-gel method. It has been shown that the decay of electronic excitations in colloidal quantum dots of this type is predominantly related to a fast localization of nonequilibrium charge carriers on surface defects and their subsequent recombination during times on the order of units and tens of picoseconds. The passage to core-shell systems eliminates, to a large extent, surface defects of the core, some of which are luminescence centers. However, upon using the sol-gel synthesis, a noticeable fraction of luminescence centers are formed in the interior of the CdS quantum dot, which, as well as in the case of CdS/ZnS systems, ensures localization of exciton, blocks its direct annihilation, and maintains recombination radiation.

23 citations

Journal ArticleDOI
TL;DR: In this paper, the 1Se−1S3/2 exciton in colloidal CdS quantum dots with involvement of localized states was studied by means of femtosecond photo-induced absorption spectroscopy (pump-probe), thermally stimulated luminescence (TSL) observed under permanently excited luminecence.
Abstract: Dynamics of the 1Se–1S3/2 exciton in colloidal CdS quantum dots with diameter of 3.1÷4.5nm in gelatin with involvement of localized states was studied by means of femtosecond photoinduced absorption spectroscopy (pump–probe), thermally stimulated luminescence (TSL) observed under permanently excited luminescence. It was found that the bleaching band occurs in the energy region of exciton ground state under excitation by femtosecond laser pulses. The complex dynamics of bleaching recovery is caused by the capture of electron on localized states, found using TSL. The stochastic model describing the dynamics of bleaching recovery is discussed. It is shown that the low efficiency of exciton luminescence is caused by the rapid capture of holes by luminescence centers.

14 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dynamics of exciton relaxation in colloidal thioglycolic acid (TGA)-capped CdS/ZnS core/shell systems with diameter of 3.6 nm by means of femtosecond transient absorption spectroscopy, thermostimulated luminescence (TSL), and decay of luminecence.
Abstract: Investigations of dynamics of exciton relaxation in colloidal thioglycolic acid (TGA)-capped CdS/ZnS core/shell systems with diameter of 3.6 nm by means of femtosecond transient absorption spectroscopy, thermostimulated luminescence (TSL), and decay of luminescence are presented in this paper. It was found that the intensity of trap-state luminescence increases when one and two ZnS monolayers are formed. Also, the lifetime of trap-state luminescence increases. Two types of trap states with different depths were found, using thermostimulated luminescence technique. Localized states of the first type with depth of 0.085 eV do not change their concentration during sell formation. In contrast, trap state of the second type with depth of 0.125 eV are almost completely removed. It was found that the electron lifetime, investigated femtosecond transient absorption is not changed during formation of ZnS shell. It was concluded that localized states are channels of non-radiative recombination, direct quenching the center of trap-state luminescence. The absence of exciton luminescence is caused by rapid localization of holes at luminescence center.

11 citations

Journal ArticleDOI
TL;DR: In this paper, superfast transformation of non-stationary spectra in an HITC dye bleaching band is found, and the observed effects are interpreted within the framework of concepts on “burning out” a notch in the contour of a non-uniformly widened vibronic band of Sσ 0 → Sσ 1-absorption.
Abstract: Spectral-kinetic and photochemical properties of HITC dye with iodide and perchlorate counterions have been studied in environments where the dye molecules exist in different ionic forms. In ethanol, the dye molecules exist as free ions; in dichlorobenzene, as contact ion pairs. Superfast transformation of non-stationary spectra in an HITC dye bleaching band is found. The observed effects are interpreted within the framework of concepts on “burning out” a notch in the contour of a non-uniformly widened vibronic band of S 0 → S 1-absorption. Qualitative differences in recorded absorption spectra from the dye excited electronic states for weakly and highly polar solvents are found. It is shown that the observed differences are caused by superfast charge transfer in the contact ion pairs that results in the formation of free radicals.

10 citations


Cited by
More filters
Journal Article
TL;DR: In the limit of a QD much smaller than the bulk exciton size, the linear spectrum will be a series of lines, and the phonon broadening of these lines is considered.
Abstract: We analyze theoretically the optical properties of ideal semiconductor crystallites so small that they show quantum confinement in all three dimensions [quantum dots (QD's)]. In the limit of a QD much smaller than the bulk exciton size, the linear spectrum will be a series of lines, and we consider the phonon broadening of these lines. The lowest interband transition will saturate like a two-level system, without exchange and Coulomb screening. Depending on the broadening, the absorption and the changes in absorption and refractive index resulting from saturation can become very large, and the local-field effects can become so strong as to give optical bistability without external feedback. The small QD limit is more readily achieved with narrow-band-gap semiconductors.

788 citations

Journal ArticleDOI
TL;DR: The advantages and disadvantages of the various nonradiative models while focusing on the model that was initially proposed by Glasbeek and co-workers for auramine-O to be the best suited for ThT are discussed.
Abstract: Thioflavin-T (ThT) can bind to amyloid fibrils and is frequently used as a fluorescent marker for in vitro biomedical assays of the potency of inhibitors for amyloid-related diseases, such as Alzheimer's disease, Parkinson's disease, and amyloidosis. Upon binding to amyloid fibrils, the steady-state (time-integrated) emission intensity of ThT increases by orders of magnitude. The simplicity of this type of measurement has made ThT a common fluorescent marker in biomedical research over the last 50 years. As a result of the remarkable development in ultrafast spectroscopy measurements, researchers have made substantial progress in understanding the photophysical nature of ThT. Both ab initio quantum-mechanical calculations and experimental evidence have shown that the electronically excited-state surface potential of ThT is composed of two regimes: a locally excited (LE) state and a charge-transfer (CT) state. The electronic wave function of the excited state changes from the initial LE state to the CT state as a result of the rotation around a single C-C bond in the middle of the molecule, which connects the benzothiazole moiety to the dimethylanilino ring. This twisted-internal-CT (TICT) is responsible for the molecular rotor behavior of ThT. This Account discusses several factors that can influence the LE-TICT dynamics of the excited state. Solvent, temperature, and hydrostatic pressure play roles in this process. In the context of biomedical assays, the binding to amyloid fibrils inhibits the internal rotation of the molecular segments and as a result, the electron cannot cross into the nonradiative "dark" CT state. The LE state has high oscillator strength that enables radiative excited-state relaxation to the ground state. This process makes the ThT molecule light up in the presence of amyloid fibrils. In the literature, researchers have suggested several models to explain nonradiative processes. We discuss the advantages and disadvantages of the various nonradiative models while focusing on the model that was initially proposed by Glasbeek and co-workers for auramine-O to be the best suited for ThT. We further discuss the computational fitting of the model for the nonradiative process of ThT.

305 citations

Journal Article
TL;DR: The fascinating structural and biological properties of xanthone dimers and heterodimers may excite the synthetic or natural product chemist.
Abstract: Many fungi, lichens, and bacteria produce xanthones (derivatives of 9H-xanthen-9-one, “xanthone” from the Greek “xanthos”, for “yellow”) as secondary metabolites. Xanthones are typically polysubstituted and occur as either fully aromatized, dihydro-, tetrahydro-, or, more rarely, hexahydro-derivatives. This family of compounds appeals to medicinal chemists because of their pronounced biological activity within a notably broad spectrum of disease states, a result of their interaction with a correspondingly diverse range of target biomolecules. This has led to the description of xanthones as “privileged structures”.(1) Historically, the total synthesis of the natural products has mostly been limited to fully aromatized targets. Syntheses of the more challenging partially saturated xanthones have less frequently been reported, although the development in recent times of novel and reliable methods for the construction of the (polysubstituted) unsaturated xanthone core holds promise for future endeavors. In particular, the fascinating structural and biological properties of xanthone dimers and heterodimers may excite the synthetic or natural product chemist.

236 citations

Journal ArticleDOI
TL;DR: Recently developed FMRs including push-pull type π-conjugated chromophores, meso-phenyl (borondipyrromethene) (BODIPY) derivatives, dioxaborine derivatives, cyanine derivatives and porphyrin derivatives whose FL mechanism is viscosity-responsive are described.
Abstract: Fluorescent molecular rotors (FMRs) can act as viscosity sensors in various media including subcellular organelles and microfluidic channels. In FMRs, the rotation of rotators connected to a fluorescent π-conjugated bridge is suppressed by increasing environmental viscosity, resulting in increasing fluorescence (FL) intensity. In this minireview, we describe recently developed FMRs including push-pull type π-conjugated chromophores, meso-phenyl (borondipyrromethene) (BODIPY) derivatives, dioxaborine derivatives, cyanine derivatives, and porphyrin derivatives whose FL mechanism is viscosity-responsive. In addition, FMR design strategies for addressing various issues (e.g., obtaining high FL contrast, internal FL references, and FL intensity-contrast trade-off) and their biological and microfluidic applications are also discussed.

157 citations

Journal ArticleDOI
TL;DR: This work presents the first, to their knowledge, atomistically detailed picture of CR binding to protofibrils of the Alzheimer Aβ(9-40) peptide, and shows that birefringence upon CR binding is due to the anisotropic orientation of the CR dipoles resulting from the spatial ordering of these molecules in the grooves along the fibril axis.

145 citations