scispace - formally typeset
Search or ask a question
Author

O.Y. Takeshita

Bio: O.Y. Takeshita is an academic researcher from Ohio State University. The author has contributed to research in topics: Turbo code & Permutation polynomial. The author has an hindex of 11, co-authored 15 publications receiving 1180 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A class of deterministic interleavers for turbo codes (TCs) based on permutation polynomials over /spl Zopf//sub N/ is introduced, which can be algebraically designed to fit a given component code.
Abstract: A class of deterministic interleavers for turbo codes (TCs) based on permutation polynomials over /spl Zopf//sub N/ is introduced. The main characteristic of this class of interleavers is that they can be algebraically designed to fit a given component code. Moreover, since the interleaver can be generated by a few simple computations, storage of the interleaver tables can be avoided. By using the permutation polynomial-based interleavers, the design of the interleavers reduces to the selection of the coefficients of the polynomials. It is observed that the performance of the TCs using these permutation polynomial-based interleavers is usually dominated by a subset of input weight 2m error events. The minimum distance and its multiplicity (or the first few spectrum lines) of this subset are used as design criterion to select good permutation polynomials. A simple method to enumerate these error events for small m is presented. Searches for good interleavers are performed. The decoding performance of these interleavers is close to S-random interleavers for long frame sizes. For short frame sizes, the new interleavers outperform S-random interleavers.

285 citations

Journal ArticleDOI
TL;DR: It is shown that permutation polynomials generate maximum contention-free interleavers, i.e., every factor of the interleaver length becomes a possible degree of parallel processing of the decoder.
Abstract: An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are of particular interest because they admit analytical designs and simple, practical hardware implementation. Contention-free interleavers have been recently shown to be suitable for parallel decoding of turbo codes. In this correspondence, it is shown that permutation polynomials generate maximum contention-free interleavers, i.e., every factor of the interleaver length becomes a possible degree of parallel processing of the decoder. Further, it is shown by computer simulations that turbo codes using these interleavers perform very well for the Third Generation Partnership Project (3GPP) standard

197 citations

Journal ArticleDOI
TL;DR: Several new classes of deterministic interleavers of length N are presented, with construction complexity O(N), that permute a sequence of bits with nearly the same statistical distribution as a random interleaver and perform as well as or better than the average of a set of randomInterleavers.
Abstract: It is well known that an interleaver with random properties, quite often generated by pseudo-random algorithms, is one of the essential building blocks of turbo codes. However, randomly generated interleavers have two major drawbacks: lack of an adequate analysis that guarantees their performance and lack of a compact representation that leads to a simple implementation. We present several new classes of deterministic interleavers of length N, with construction complexity O(N), that permute a sequence of bits with nearly the same statistical distribution as a random interleaver and perform as well as or better than the average of a set of random interleavers. The new classes of deterministic interleavers have a very simple representation based on quadratic congruences and hence have a structure that allows the possibility of analysis as well as a straightforward implementation. Using the new interleavers, a turbo code of length 16384 that is only 0.7 dB away from capacy at a bit-error rate (BER) of 10/sup -5/ is constructed. We also generalize the theory of previously known deterministic interleavers that are based on block interleavers, and we apply this theory to the construction of a nonrandom turbo code of length 16384 with a very regular structure whose performance is only 1.1 dB away from capacity at a BER of 10/sup -5/.

152 citations

Journal ArticleDOI
TL;DR: This work extends an algebraic design framework for space-time coding in flat-fading channels to design algebraic codes for multiple-input multiple-output (MIMO) frequency-selective fading channels and proposes a serially concatenated coding construction which is shown to offer a performance gain with a reasonable complexity iterative receiver in some scenarios.
Abstract: The authors introduced an algebraic design framework for space-time coding in flat-fading channels . We extend this framework to design algebraic codes for multiple-input multiple-output (MIMO) frequency-selective fading channels. The proposed codes strive to optimally exploit both the spatial and frequency diversity available in the channel. We consider two design approaches: The first uses space-time coding and maximum likelihood decoding to exploit the multi-path nature of the channel at the expense of increased receiver complexity. Within this time domain framework, we also propose a serially concatenated coding construction which is shown to offer a performance gain with a reasonable complexity iterative receiver in some scenarios. The second approach utilizes the orthogonal frequency division multiplexing technique to transform the MIMO multipath channel into a MIMO flat block fading channel. The algebraic framework is then used to construct space-frequency codes (SFC) that optimally exploit the diversity available in the resulting flat block fading channel. Finally, the two approaches are compared in terms of decoder complexity, maximum achievable diversity advantage, and simulated frame error rate performance in certain representative scenarios.

107 citations

Journal ArticleDOI
TL;DR: A new interleaver metric that is a function of both the nonlinearity metric and the spread factor is proposed and it is numerically demonstrated that the spread factors has a diminishing importance with the block length.
Abstract: An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are important because they admit analytical designs and simple, practical hardware implementation. The spread factor of an interleaver is a common measure for turbo coding applications. Maximum-spread interleavers are interleavers whose spread factors achieve the upper bound. An infinite sequence of quadratic PPs over integer rings that generate maximum-spread interleavers is presented. New properties of PP interleavers are investigated from an algebraic-geometric perspective resulting in a new non- linearity metric for interleavers. A new interleaver metric that is a function of both the nonlinearity metric and the spread factor is proposed. It is numerically demonstrated that the spread factor has a diminishing importance with the block length. A table of good interleavers for a variety of interleaver lengths according to the new metric is listed. Extensive computer simulation results with impressive frame error rates confirm the efficacy of the new metric. Further, when tail-biting constituent codes are used, the resulting turbo codes are quasi-cyclic.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of progress in the area of multiple input multiple output (MIMO) space-time coded wireless systems is presented and the state of the art in channel modeling and measurements is presented, leading to a better understanding of actual MIMO gains.
Abstract: This paper presents an overview of progress in the area of multiple input multiple output (MIMO) space-time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of techniques and algorithms proposed which attempt to realize the various benefits of MIMO including spatial multiplexing and space-time coding schemes. These algorithms are often derived and analyzed under ideal independent fading conditions. We present the state of the art in channel modeling and measurements, leading to a better understanding of actual MIMO gains. Finally, the paper addresses current questions regarding the integration of MIMO links in practical wireless systems and standards.

2,488 citations

Dissertation
24 Apr 2002
TL;DR: Results show that remarkable energy and spectral efficiencies are achievable by combining concepts drawn from space-time coding, multiuser detection, array processing and iterative decoding.
Abstract: Space-time codes (STC) are a class of signaling techniques, offering coding and diversity gains along with improved spectral efficiency. These codes exploit both the spatial and the temporal diversity of the wireless link by combining the design of the error correction code, modulation scheme and array processing. STC are well suited for improving the downlink performance, which is the bottleneck in asymmetric applications such as downstream Internet. Three original contributions to the area of STC are presented in this dissertation. First, the development of analytic tools that determine the fundamental limits on the performance of STC in a variety of channel conditions. For trellis-type STC, transfer function based techniques are applied to derive performance bounds over Rayleigh, Rician and correlated fading environments. For block-type STC, an analytic framework that supports various complex orthogonal designs with arbitrary signal cardinalities and array configurations is developed. In the second part of the dissertation, the Virginia Tech Space-Time Advanced Radio (VT-STAR) is designed, introducing a multi-antenna hardware laboratory test bed, which facilitates characterization of the multiple-input multiple-output (MIMO) channel and validation of various space-time approaches. In the third part of the dissertation, two novel space-time architectures paired with iterative processing principles are proposed. The first scheme extends the suitability of STC to outdoor wireless communications by employing iterative equalization/decoding for time dispersive channels and the second scheme employs iterative interference cancellation/decoding to solve the error propagation problem of Bell-Labs Layered Space-Time Architecture (BLAST). Results show that remarkable energy and spectral efficiencies are achievable by combining concepts drawn from space-time coding, multiuser detection, array processing and iterative decoding.

2,286 citations

Journal ArticleDOI
08 Nov 2004
TL;DR: The paper explores various physical layer research challenges in MIMO-OFDM system design, including physical channel measurements and modeling, analog beam forming techniques using adaptive antenna arrays, and signal processing algorithms used to perform time and frequency synchronization, channel estimation, and channel tracking in M IMO- OFDM systems.
Abstract: Orthogonal frequency division multiplexing (OFDM) is a popular method for high data rate wireless transmission. OFDM may be combined with antenna arrays at the transmitter and receiver to increase the diversity gain and/or to enhance the system capacity on time-varying and frequency-selective channels, resulting in a multiple-input multiple-output (MIMO) configuration. The paper explores various physical layer research challenges in MIMO-OFDM system design, including physical channel measurements and modeling, analog beam forming techniques using adaptive antenna arrays, space-time techniques for MIMO-OFDM, error control coding techniques, OFDM preamble and packet design, and signal processing algorithms used to perform time and frequency synchronization, channel estimation, and channel tracking in MIMO-OFDM systems. Finally, the paper considers a software radio implementation of MIMO-OFDM.

1,475 citations

Journal ArticleDOI
TL;DR: This highly successful textbook, widely regarded as the “bible of computer algebra”, gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems.
Abstract: Computer algebra systems are now ubiquitous in all areas of science and engineering. This highly successful textbook, widely regarded as the “bible of computer algebra”, gives a thorough introduction to the algorithmic basis of the mathematical engine in computer algebra systems. Designed to accompany oneor two-semester courses for advanced undergraduate or graduate students in computer science or mathematics, its comprehensiveness and reliability has also made it an essential reference for professionals in the area. Special features include: detailed study of algorithms including time analysis; implementation reports on several topics; complete proofs of the mathematical underpinnings; and a wide variety of applications (among others, in chemistry, coding theory, cryptography, computational logic, and the design of calendars and musical scales). A great deal of historical information and illustration enlivens the text. In this third edition, errors have been corrected and much of the Fast Euclidean Algorithm chapter has been renovated.

937 citations

Journal ArticleDOI
TL;DR: This paper addresses basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques.
Abstract: Orthogonal frequency-division multiplexing (OFDM) effectively mitigates intersymbol interference (ISI) caused by the delay spread of wireless channels. Therefore, it has been used in many wireless systems and adopted by various standards. In this paper, we present a comprehensive survey on OFDM for wireless communications. We address basic OFDM and related modulations, as well as techniques to improve the performance of OFDM for wireless communications, including channel estimation and signal detection, time- and frequency-offset estimation and correction, peak-to-average power ratio reduction, and multiple-input-multiple-output (MIMO) techniques. We also describe the applications of OFDM in current systems and standards.

915 citations