scispace - formally typeset
Search or ask a question
Author

Oberdan Leo

Bio: Oberdan Leo is an academic researcher from Université libre de Bruxelles. The author has contributed to research in topics: T cell & Antigen. The author has an hindex of 56, co-authored 213 publications receiving 13387 citations. Previous affiliations of Oberdan Leo include University of Chicago & Free University of Brussels.


Papers
More filters
Journal ArticleDOI
TL;DR: Results identify T3-epsilon as a cell surface protein involved in the transduction of activation signals and can both activate and inhibit T-cell function.
Abstract: A monoclonal antibody (145-2C11) specific for the murine T3 complex was derived by immunizing Armenian hamsters with a murine cytolytic T-cell clone. The antibody is specific for a 25-kDa protein component (T3-epsilon) of the antigen-specific T-cell receptor. It reacts with all mature T cells and can both activate and inhibit T-cell function. These results identify T3-epsilon as a cell surface protein involved in the transduction of activation signals.

1,509 citations

Journal ArticleDOI
TL;DR: It is reported here that both subclasses of DCs efficiently prime antigen-specific T cells in vivo, and direct the development of distinct T helper (Th) populations, and it is shown that interleukin 12 plays a critical role in Th1 development by CD8α+ DCs.
Abstract: Cells of the dendritic family display some unique properties that confer to them the capacity to sensitize naive T cells in vitro and in vivo. In the mouse, two subclasses of dendritic cells (DCs) have been described that differ by their CD8α expression and their localization in lymphoid organs. The physiologic function of both cell populations remains obscure. Studies conducted in vitro have suggested that CD8α+ DCs could play a role in the regulation of immune responses, whereas conventional CD8α− DCs would be more stimulatory. We report here that both subclasses of DCs efficiently prime antigen-specific T cells in vivo, and direct the development of distinct T helper (Th) populations. Antigen-pulsed CD8α+ and CD8α− DCs are separated after overnight culture in recombinant granulocyte/macrophage colony-stimulating factor and injected into the footpads of syngeneic mice. Administration of CD8α− DCs induces a Th2-type response, whereas injection of CD8α+ DCs leads to Th1 differentiation. We further show that interleukin 12 plays a critical role in Th1 development by CD8α+ DCs. These findings suggest that the nature of the DC that presents the antigen to naive T cells may dictate the class selection of the adaptative immune response.

992 citations

Journal ArticleDOI
TL;DR: Evidence is obtained for maturation in vivo in response to the bacterial product lipopolysaccharide (LPS), which is interpreted to mean that LPS can cause DC in the marginal zone to mature and to migrate into and then out of the T cell areas.
Abstract: Dendritic cells (DC) are described as "nature's adjuvant," since they have the capacity to sensitize T cells in vivo upon first encounter with the antigen. The potent accessory properties of DC appear to develop sequentially. In particular, the ability to process antigens and to sensitize native T cells develops in sequence, a process termed "maturation" that is well described in vitro. Here, we obtain evidence for maturation in vivo in response to the bacterial product lipopolysaccharide (LPS). Before LPS treatment, many DC are found at the margin between the red and white pulp. These cells lack the M342 and DEC-205 markers, but process soluble proteins effectively. 6 h after LPS, DC with the M342 and DEC-205 markers are found in increased numbers in the T cell areas. These cells have a reduced capacity to process proteins, but show increases in the B7 costimulator and T cell stimulatory capacity. 48 h after LPS, the number of DC in the spleen is reduced markedly. We interpret these findings to mean that LPS can cause DC in the marginal zone to mature and to migrate into and then out of the T cell areas.

807 citations

Journal ArticleDOI
TL;DR: The data show that DC that have undergone maturation in vitro in the presence of IL‐10, have an impaired capacity to induce a Th1‐type response in vivo, leading to the development of Th2 lymphocytes, and suggest thatIL‐10 skews the Th1/Th2 balance to Th2 in vivo by selectively blocking IL‐12 synthesis by the antigen‐presenting cells that play a role of adjuvant of the primary immune response.
Abstract: The main function of dendritic cells (DC) is to induce the differentiation of naive T lymphocytes into helper cells producing a large array of lymphokines, including interleukin (IL)-2; interferon-gamma (IFN-gamma), IL-4, IL-5 and IL-10. The potent immunostimulatory properties of DC develop during a process of maturation that occurs spontaneously in vitro. Since IL-10 has been shown to inhibit Th1 responses, we determined its effect on DC maturation and accessory function. Our data show that DC that have undergone maturation in vitro in the presence of IL-10, have an impaired capacity to induce a Th1-type response in vivo, leading to the development of Th2 lymphocytes. Their inability to promote the synthesis of IFN-gamma seems to correlate with a decreased production of IL-12, an heterodimeric cytokine necessary for optimal generation of Th1-type cells. These results suggest that IL-10 skews the Th1/Th2 balance to Th2 in vivo by selectively blocking IL-12 synthesis by the antigen-presenting cells that play a role of adjuvant of the primary immune response. The cytokines present in the environment at the presentation step may, therefore, determine the class of the immune response induced by DC in vivo, i.e. Th0, Th1 and/or Th2.

592 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the murine homologue of the previously identified human "pre‐B‐cell colony‐enhancing factor" (PBEF) gene coding for a putative cytokine has been identified by screening a subtractive library enriched in genes expressed in activated T lymphocytes, and NAD biosynthesis may play an important role in lymphocyte activation.
Abstract: The murine homologue of the previously identified human "pre-B-cell colony-enhancing factor" (PBEF) gene coding for a putative cytokine has been identified by screening a subtractive library enriched in genes expressed in activated T lymphocytes. Unlike most cytokine genes known to date, the PBEF gene is ubiquitously expressed in lymphoid and non-lymphoid tissues and displays significant homology with genes from primitive metazoans (marine sponges) and prokaryotic organisms. Recently, a bacterial protein encoded by nadV, a gene from the prokaryote Haemophilus ducreyi displaying significant homology with PBEF, has been identified as a nicotinamide phosphoribosyltranferase (NAmPRTase), an enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis. Using a panel of antibodies to murine PBEF, we demonstrate in this work that, similarly to its microbial counterpart, the murine protein is a NAmPRTase, catalyzing the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide, an intermediate in the biosynthesis of NAD. The role of PBEF as a NAmPRTase was further confirmed by showing that the mouse gene was able to confer the ability to grow in the absence of NAD to a NAmPRTase-defective bacterial strain. The present findings are in keeping with the ubiquitous nature of this protein, and indicate that NAD biosynthesis may play an important role in lymphocyte activation.

517 citations


Cited by
More filters
Journal ArticleDOI
19 Mar 1998-Nature
TL;DR: Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis and the realization that these cells are a powerful tool for manipulating the immune system is realized.
Abstract: B and T lymphocytes are the mediators of immunity, but their function is under the control of dendritic cells. Dendritic cells in the periphery capture and process antigens, express lymphocyte co-stimulatory molecules, migrate to lymphoid organs and secrete cytokines to initiate immune responses. They not only activate lymphocytes, they also tolerize T cells to antigens that are innate to the body (self-antigens), thereby minimizing autoimmune reactions. Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis. With knowledge comes the realization that these cells are a powerful tool for manipulating the immune system.

14,532 citations

Journal ArticleDOI
TL;DR: Dendritic cells are antigen-presenting cells with a unique ability to induce primary immune responses and may be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response.
Abstract: Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.

6,758 citations

Journal ArticleDOI
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations

Journal ArticleDOI
TL;DR: The authors showed that CD4+CD25+ cells contribute to maintaining self-tolerance by downregulating immune response to self and non-self Ags in an Ag-nonspecific manner, presumably at the T cell activation stage.
Abstract: Approximately 10% of peripheral CD4+ cells and less than 1% of CD8+ cells in normal unimmunized adult mice express the IL-2 receptor alpha-chain (CD25) molecules. When CD4+ cell suspensions prepared from BALB/c nu/+ mice lymph nodes and spleens were depleted of CD25+ cells by specific mAb and C, and then inoculated into BALB/c athymic nude (nu/nu) mice, all recipients spontaneously developed histologically and serologically evident autoimmune diseases (such as thyroiditis, gastritis, insulitis, sialoadenitis, adrenalitis, oophoritis, glomerulonephritis, and polyarthritis); some mice also developed graft-vs-host-like wasting disease. Reconstitution of CD4+CD25+ cells within a limited period after transfer of CD4+CD25- cells prevented these autoimmune developments in a dose-dependent fashion, whereas the reconstitution several days later, or inoculation of an equivalent dose of CD8+ cells, was far less efficient for the prevention. When nu/nu mice were transplanted with allogeneic skins or immunized with xenogeneic proteins at the time of CD25- cell inoculation, they showed significantly heightened immune responses to the skins or proteins, and reconstitution of CD4+CD25+ cells normalized the responses. Taken together, these results indicate that CD4+CD25+ cells contribute to maintaining self-tolerance by down-regulating immune response to self and non-self Ags in an Ag-nonspecific manner, presumably at the T cell activation stage; elimination/reduction of CD4+CD25+ cells relieves this general suppression, thereby not only enhancing immune responses to non-self Ags, but also eliciting autoimmune responses to certain self-Ags. Abnormality of this T cell-mediated mechanism of peripheral tolerance can be a possible cause of various autoimmune diseases.

5,929 citations

Journal ArticleDOI
31 Oct 1996-Nature
TL;DR: The existence of subsets of CD4+ helper T lymphocytes that differ in their cytokine secretion patterns and effector functions provides a framework for understanding the heterogeneity of normal and pathological immune responses.
Abstract: The existence of subsets of CD4+ helper T lymphocytes that differ in their cytokine secretion patterns and effector functions provides a framework for understanding the heterogeneity of normal and pathological immune responses. Defining the cellular and molecular mechanisms of helper-T-cell differentiation should lead to rational strategies for manipulating immune responses for prophylaxis and therapy.

4,578 citations