scispace - formally typeset
Search or ask a question
Author

Ognjen Vuković

Bio: Ognjen Vuković is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Electric power system & Anonymity. The author has an hindex of 6, co-authored 12 publications receiving 319 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper investigates the vulnerability of the power system state estimator to attacks performed against the communication infrastructure and proposes approximations of these metrics, that are based on the communication network topology only, and provides efficient algorithms to calculate the security metrics.
Abstract: Critical power system applications like contingency analysis and optimal power flow calculation rely on the power system state estimator. Hence the security of the state estimator is essential for the proper operation of the power system. In the future more applications are expected to rely on it, so that its importance will increase. Based on realistic models of the communication infrastructure used to deliver measurement data from the substations to the state estimator, in this paper we investigate the vulnerability of the power system state estimator to attacks performed against the communication infrastructure. We define security metrics that quantify the importance of individual substations and the cost of attacking individual measurements. We propose approximations of these metrics, that are based on the communication network topology only, and we compare them to the exact metrics. We provide efficient algorithms to calculate the security metrics. We use the metrics to show how various network layer and application layer mitigation strategies, like single and multi-path routing and data authentication, can be used to decrease the vulnerability of the state estimator. We illustrate the efficiency of the algorithms on the IEEE 118 and 300 bus benchmark power systems.

152 citations

Journal ArticleDOI
TL;DR: It is shown that an attacker that compromises the communication infrastructure of a single control center in an interconnected power system can successfully perform a denial-of-service attack against state-of theart distributed SE, and consequently, it can blind the system operators of every region.
Abstract: State estimation (SE) plays an essential role in the monitoring and supervision of power systems. In today's power systems, SE is typically done in a centralized or in a hierarchical way, but as po ...

81 citations

Proceedings ArticleDOI
15 Dec 2011
TL;DR: This paper defines security metrics that quantify the importance of individual substations and the cost of attacking individual measurements, and uses the metrics to show how various network layer and application layer mitigation strategies can be used to decrease the vulnerability of the state estimator.
Abstract: The power system state estimator is an important application used to calculate optimal power flows, to maintain the system in a secure state, and to detect faulty equipment. Its importance in the operation of the smart grid is expected to increase, and therefore its security is an important concern. Based on a realistic model of the communication infrastructure used to deliver measurement data from the substations to the state estimator, in this paper we investigate the vulnerability of the power system state estimator to attacks performed against the communication infrastructure. We define security metrics that quantify the importance of individual substations and the cost of attacking individual measurements. We provide efficient algorithms to calculate these metrics, and use the metrics to show how various network layer and application layer mitigation strategies can be used to decrease the vulnerability of the state estimator. We illustrate the efficiency of the algorithms on the IEEE 118 and 300 bus benchmark power systems.

53 citations

Proceedings ArticleDOI
18 Mar 2013
TL;DR: This paper investigates how a single compromised control center can affect the outcome of distributed state estimation, and shows that even if the state estimation converges despite the attack, the estimate can have up to 30% of error, and bad data detection cannot locate the attack.
Abstract: State estimation plays an essential role in the monitoring and control of power transmission systems. In modern, highly inter-connected power systems the state estimation should be performed in a distributed fashion and requires information exchange between the control centers of directly connected systems. Motivated by recent reports on trojans targeting industrial control systems, in this paper we investigate how a single compromised control center can affect the outcome of distributed state estimation. We describe five attack strategies, and evaluate their impact on the IEEE 118 benchmark power system. We show that that even if the state estimation converges despite the attack, the estimate can have up to 30% of error, and bad data detection cannot locate the attack. We also show that if powerful enough, the attack can impede the convergence of the state estimation, and thus it can blind the system operators. Our results show that it is important to provide confidentiality for the measurement data in order to prevent the most powerful attacks. Finally, we discuss a possible way to detect and to mitigate these attacks.

22 citations

Proceedings ArticleDOI
19 Dec 2013
TL;DR: This work shows that an attacker that compromises a single control center in an interconnected system could launch a denial of service attack against state-of-the-art distributed state estimation by injecting false data, and consequently, it could blind the entire system.
Abstract: Distributed state estimation will play a central role in the efficient and reliable operation of interconnected power systems. Therefore, its security is of major concern. In this work we show that an attacker that compromises a single control center in an interconnected system could launch a denial of service attack against state-of-the-art distributed state estimation by injecting false data, and consequently, it could blind the entire system. We propose a fully distributed attack detection scheme based on local measurements to detect such a denial of service attack. We then propose a fully distributed attack localization scheme that relies on the regions' beliefs about the attack location, and performs inference on the power system topology to identify the most likely attack location. We validate both algorithms on the IEEE 118 bus power system.

19 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper focuses on reviewing and discussing security requirements, network vulnerabilities, attack countermeasures, secure communication protocols and architectures in the Smart Grid, and aims to provide a deep understanding of security vulnerabilities and solutions in the smart grid.

854 citations

Journal ArticleDOI
TL;DR: An overview of recent advances on security control and attack detection of industrial CPSs is presented, and robustness, security and resilience as well as stability are discussed to govern the capability of weakening various attacks.

663 citations

Journal ArticleDOI
TL;DR: This survey comprehensively overviews three major aspects: constructing FDI attacks; impacts of FDI attacked systems' impacts on electricity market; and defending against F DI attacks.
Abstract: The accurately estimated state is of great importance for maintaining a stable running condition of power systems. To maintain the accuracy of the estimated state, bad data detection (BDD) is utilized by power systems to get rid of erroneous measurements due to meter failures or outside attacks. However, false data injection (FDI) attacks, as recently revealed, can circumvent BDD and insert any bias into the value of the estimated state. Continuous works on constructing and/or protecting power systems from such attacks have been done in recent years. This survey comprehensively overviews three major aspects: constructing FDI attacks; impacts of FDI attacks on electricity market; and defending against FDI attacks. Specifically, we first explore the problem of constructing FDI attacks, and further show their associated impacts on electricity market operations, from the adversary's point of view. Then, from the perspective of the system operator, we present countermeasures against FDI attacks. We also outline the future research directions and potential challenges based on the above overview, in the context of FDI attacks, impacts, and defense.

411 citations

Journal ArticleDOI
TL;DR: Previous work on physics-based anomaly detection based on a unified taxonomy that allows us to identify limitations and unexplored challenges and to propose new solutions is reviewed.
Abstract: Monitoring the “physics” of cyber-physical systems to detect attacks is a growing area of research. In its basic form, a security monitor creates time-series models of sensor readings for an industrial control system and identifies anomalies in these measurements to identify potentially false control commands or false sensor readings. In this article, we review previous work on physics-based anomaly detection based on a unified taxonomy that allows us to identify limitations and unexplored challenges and to propose new solutions.

383 citations

Journal ArticleDOI
01 Dec 2016
TL;DR: This paper provides a comprehensive and systematic review of the critical attack threats and defence strategies in the smart grid, and focuses on prominent CP attack schemes with significant impact on the smartgrid operation and corresponding defense solutions.
Abstract: The smart grid is arguably one of the most complex cyber-physical systems (CPS). Complex security challenges have been revealed in both the physical and the cyber parts of the smart grid, and an integrative analysis on the cyber-physical (CP) security is emerging. This paper provides a comprehensive and systematic review of the critical attack threats and defence strategies in the smart grid. We start this survey with an overview of the smart grid security from the CP perspective, and then focuses on prominent CP attack schemes with significant impact on the smart grid operation and corresponding defense solutions. With an in-depth review of the attacks and defences, we then discuss the opportunities and challenges along the smart grid CP security. We hope this paper raises awareness of the CP attack threats and defence strategies in complex CPS-based infrastructures such as the smart grid and inspires research effort toward the development of secure and resilient CP infrastructures.

349 citations