scispace - formally typeset
Search or ask a question
Author

Oh Woung Kwon

Bio: Oh Woung Kwon is an academic researcher. The author has contributed to research in topics: Scale (ratio). The author has an hindex of 2, co-authored 2 publications receiving 149 citations.
Topics: Scale (ratio)

Papers
More filters
Journal ArticleDOI
TL;DR: Ginsengnoside profiles of these multiple adventitious roots were similar to profiles of field-grown ginseng roots when analyzed by HPLC, and saponin content obtained from small-scale and pilot-scale balloon type bubble bioreactors was around 1% based on dry weight.
Abstract: A pilot-scale culture of multiple adventitious roots of ginseng was established using a balloon-type bubble bioreactor. Adventitious roots (2 cm) induced from callus were cultured in plastic Petri dishes having 20 ml of solid Schenk and Hildebrandt (1972) medium containing 3% sucrose, 0.15% gelrite, and 24.6 μM indole-3-butric acid. An average of 29 secondary multiple adventitious roots were produced after 4 weeks of culture. These secondary roots were elongated on the same medium, reaching a length of 5 cm after 6 weeks of culture. A time course study revealed that maximum yields in 5-l and 20-l bioreactors were approximately 500 g and 2.2 kg at day 42 with 60 g and 240 g inoculations, respectively. Cutting twice during the culture increased the total amount of biomass produced. The root biomass in a 20-l balloon-type bubble bioreactor was 2.8 kg at harvest with 240 g of inoculum after 8 weeks of culture. The total saponin content obtained from small-scale and pilot-scale balloon type bubble bioreactors was around 1% based on dry weight. Inoculation of 500 g fresh weight of multiple adventitious roots into a 500 l balloon-type bubble bioreactor with cutting at 4 and 6 weeks after inoculation produced approximately 74.8 kg of multiple roots. The ginsengnoside profiles of these multiple adventitious roots were similar to profiles of field-grown ginseng roots when analyzed by HPLC.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: By following stage-specific strategies, it is possible to produce large amounts of biomass with an increase in the accumulation of secondary compounds, which are used as pharmaceuticals, agrochemicals, flavors, fragrances, coloring agents, biopesticides, and food additives.
Abstract: Plant cell and organ cultures have emerged as potential sources of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavors, fragrances, coloring agents, biopesticides, and food additives. In recent years, various strategies have been developed to assess biomass accumulation and synthesis of secondary compounds in cultures. Biomass accumulation and metabolite biosynthesis are two-stage events, and the parameters that control the growth and multiplication of cultured cells/organs and biomass accumulation are controlled in the first stage. Parameters that assist with the biosynthesis of metabolites are controlled in the second stage. The selection of high-producing cells or organ clones; optimization of medium parameters such as suitable medium, salt, sugar, nitrogen, phosphate, and plant growth regulator levels; and physical factors such as temperature, illumination, light quality, medium pH, agitation, aeration, and environmental gas (e.g., oxygen, carbon dioxide, and ethylene) are controlled in the first stage of the culture process. Elicitation, replenishment of nutrient and precursor feeding, permeabilization, and immobilization strategies assist with the accumulation of metabolites and can be applied in the second stage of the culture process. By following stage-specific strategies, it is possible to produce large amounts of biomass with an increase in the accumulation of secondary compounds.

470 citations

Journal ArticleDOI
TL;DR: Low cost and less labour-intensive clonal propagation through the use of modified air-lift, bubble column, bioreactors, together with temporary immersion systems for the propagation of shoots, bud-clusters and somatic embryos is described.
Abstract: Automation of micropropagation via organogenesis or somatic embryogenesis in a bioreactor has been advanced as a possible way of reducing costs. Micropropagation by conventional techniques is typically a labour-intensive means of clonal propagation. The paper describes lower cost and less labour-intensive clonal propagation through the use of modified air-lift, bubble column, bioreactors (a balloon-type bubble bioreactor), together with temporary immersion systems for the propagation of shoots, bud-clusters and somatic embryos. Propagation of Anoectochilus, apple, Chrysanthemum, garlic, ginseng, grape, Lilium, Phalaenopsis and potato is described. In this chapter, features of bioreactors and bioreactor process design specifically for automated mass propagation of several plant crops are described, and recent research aimed at maximizing automation of the bioreactor production process is highlighted.

233 citations

Journal ArticleDOI
TL;DR: In this paper, a new OSC gene (named as PNA) was expressed in a lanosterol synthase deficient (erg7) Saccharomyces cerevisiae strain GIL77.

183 citations

Journal ArticleDOI
TL;DR: The effort has shifted towards optimizing culture conditions for high-value pharmaceuticals production through the application of cell line selection, elicitation, precursor feeding, two-phase co-culture among cell, tissue, and organ culture approaches.
Abstract: Biotechnology is playing a vital alternative role in the production of pharmaceutical plant secondary metabolites to support industrial production and mitigate over-exploitation of natural sources. High-value pharmaceuticals that include alkaloids, flavonoids, terpenes, steroids, among others, are biosynthesized as a defensive strategy by plants in response to perturbations under natural environmental conditions. However, they can also be produced using plant cell, tissue, and organ culture techniques through the application of various in vitro approaches and strategies. In the past decades, efforts were on the clonal propagation, biomass and secondary metabolites production in the in vitro cultures of medicinally important plants that produce these molecules. In recent years, the effort has shifted towards optimizing culture conditions for their production through the application of cell line selection, elicitation, precursor feeding, two-phase co-culture among cell, tissue, and organ culture approaches. The efforts are made with the possibility to scale-up the production, meet pharmaceutical industry demand and conserve natural sources of the molecules. Applications of metabolic engineering and production from endophytes are also getting increasing attention but, the approaches are far from practical application in their industrial production.

167 citations

Journal ArticleDOI
TL;DR: The results of this study contribute to optimization and development of bioreactor technology for adventitious root cultures of H. perforatum for the production of hypericin.

167 citations