scispace - formally typeset
Search or ask a question
Author

Oksam Chae

Bio: Oksam Chae is an academic researcher from Kyung Hee University. The author has contributed to research in topics: Edge detection & Object detection. The author has an hindex of 24, co-authored 126 publications receiving 3396 citations.


Papers
More filters
Journal ArticleDOI
01 May 2007
TL;DR: This dynamic histogram equalization (DHE) technique takes control over the effect of traditional HE so that it performs the enhancement of an image without making any loss of details in it.
Abstract: In this paper, a smart contrast enhancement technique based on conventional histogram equalization (HE) algorithm is proposed. This dynamic histogram equalization (DHE) technique takes control over the effect of traditional HE so that it performs the enhancement of an image without making any loss of details in it. DHE partitions the image histogram based on local minima and assigns specific gray level ranges for each partition before equalizing them separately. These partitions further go though a repartitioning test to ensure the absence of any dominating portions. This method outperforms other present approaches by enhancing the contrast well without introducing severe side effects, such as washed out appearance, checkerboard effects etc., or undesirable artifacts.

892 citations

Journal ArticleDOI
TL;DR: A novel local feature descriptor, local directional number pattern (LDN), for face analysis, i.e., face and expression recognition, that encodes the directional information of the face's textures in a compact way, producing a more discriminative code than current methods.
Abstract: This paper proposes a novel local feature descriptor, local directional number pattern (LDN), for face analysis, i.e., face and expression recognition. LDN encodes the directional information of the face's textures (i.e., the texture's structure) in a compact way, producing a more discriminative code than current methods. We compute the structure of each micro-pattern with the aid of a compass mask that extracts directional information, and we encode such information using the prominent direction indices (directional numbers) and sign-which allows us to distinguish among similar structural patterns that have different intensity transitions. We divide the face into several regions, and extract the distribution of the LDN features from them. Then, we concatenate these features into a feature vector, and we use it as a face descriptor. We perform several experiments in which our descriptor performs consistently under illumination, noise, expression, and time lapse variations. Moreover, we test our descriptor with different masks to analyze its performance in different face analysis tasks.

469 citations

Journal ArticleDOI
TL;DR: A new appearance‐based feature descriptor, the local directional pattern (LDP), is presented to represent facial geometry and analyze its performance in expression recognition, showing the superiority of LDP descriptor against other appearance-based feature descriptors.
Abstract: Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

326 citations

Proceedings ArticleDOI
22 Feb 2010
TL;DR: A novel local feature descriptor, the Local Directional Pattern (LDP), for recognizing human face, which is obtained by computing the edge response values in all eight directions at each pixel position and generating a code from the relative strength magnitude.
Abstract: This paper presents a novel local feature descriptor, the Local Directional Pattern (LDP), for recognizing human face. A LDP feature is obtained by computing the edge response values in all eight directions at each pixel position and generating a code from the relative strength magnitude. Each face is represented as a collection of LDP codes for the recognition process.

310 citations

Proceedings ArticleDOI
23 Aug 2010
TL;DR: A novel texture descriptor Local Directional Pattern (LDP) is presented to represent facial image for gender classification and shows the superiority of the proposed method on the images collected from FERET face database.
Abstract: In this paper, we present a novel texture descriptor Local Directional Pattern (LDP) to represent facial image for gender classification. The face area is divided into small regions, from which LDP histograms are extracted and concatenated into a single vector to efficiently represent the face image. The classification is performed by using support vector machines (SVMs), which had been shown to be superior to traditional pattern classifiers in gender classification problem. Experimental results show the superiority of the proposed method on the images collected from FERET face database and achieved 95.05% accuracy.

146 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors explore the effect of dimensionality on the nearest neighbor problem and show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance of the farthest data point.
Abstract: We explore the effect of dimensionality on the nearest neighbor problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance to the farthest data point. To provide a practical perspective, we present empirical results on both real and synthetic data sets that demonstrate that this effect can occur for as few as 10-15 dimensions. These results should not be interpreted to mean that high-dimensional indexing is never meaningful; we illustrate this point by identifying some high-dimensional workloads for which this effect does not occur. However, our results do emphasize that the methodology used almost universally in the database literature to evaluate high-dimensional indexing techniques is flawed, and should be modified. In particular, most such techniques proposed in the literature are not evaluated versus simple linear scan, and are evaluated over workloads for which nearest neighbor is not meaningful. Often, even the reported experiments, when analyzed carefully, show that linear scan would outperform the techniques being proposed on the workloads studied in high (10-15) dimensionality!.

1,992 citations

Journal ArticleDOI
TL;DR: "Radiomics" refers to the extraction and analysis of large amounts of advanced quantitative imaging features with high throughput from medical images obtained with computed tomography, positron emission tomography or magnetic resonance imaging, leading to a very large potential subject pool.

1,608 citations

Journal ArticleDOI
TL;DR: Experiments on a number of challenging low-light images are present to reveal the efficacy of the proposed LIME and show its superiority over several state-of-the-arts in terms of enhancement quality and efficiency.
Abstract: When one captures images in low-light conditions, the images often suffer from low visibility. Besides degrading the visual aesthetics of images, this poor quality may also significantly degenerate the performance of many computer vision and multimedia algorithms that are primarily designed for high-quality inputs. In this paper, we propose a simple yet effective low-light image enhancement (LIME) method. More concretely, the illumination of each pixel is first estimated individually by finding the maximum value in R, G, and B channels. Furthermore, we refine the initial illumination map by imposing a structure prior on it, as the final illumination map. Having the well-constructed illumination map, the enhancement can be achieved accordingly. Experiments on a number of challenging low-light images are present to reveal the efficacy of our LIME and show its superiority over several state-of-the-arts in terms of enhancement quality and efficiency.

1,364 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate that the proposed enhancement algorithm can not only enhance the details but also preserve the naturalness for non-uniform illumination images.
Abstract: Image enhancement plays an important role in image processing and analysis. Among various enhancement algorithms, Retinex-based algorithms can efficiently enhance details and have been widely adopted. Since Retinex-based algorithms regard illumination removal as a default preference and fail to limit the range of reflectance, the naturalness of non-uniform illumination images cannot be effectively preserved. However, naturalness is essential for image enhancement to achieve pleasing perceptual quality. In order to preserve naturalness while enhancing details, we propose an enhancement algorithm for non-uniform illumination images. In general, this paper makes the following three major contributions. First, a lightness-order-error measure is proposed to access naturalness preservation objectively. Second, a bright-pass filter is proposed to decompose an image into reflectance and illumination, which, respectively, determine the details and the naturalness of the image. Third, we propose a bi-log transformation, which is utilized to map the illumination to make a balance between details and naturalness. Experimental results demonstrate that the proposed algorithm can not only enhance the details but also preserve the naturalness for non-uniform illumination images.

918 citations