scispace - formally typeset
Search or ask a question
Author

Oksana Gavrilova

Other affiliations: Durham University
Bio: Oksana Gavrilova is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Adipose tissue & Insulin resistance. The author has an hindex of 64, co-authored 173 publications receiving 20606 citations. Previous affiliations of Oksana Gavrilova include Durham University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy and that the replenishment of adiponECTin might provide a novel treatment modality for insulin resistance and type 2 diabetes.
Abstract: Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.

4,845 citations

Journal ArticleDOI
TL;DR: The A-ZIP/F-1 phenotype suggests a mouse model for the human disease lipoatrophic diabetes (Seip-Berardinelli syndrome), indicating that the lack of fat can cause diabetes.
Abstract: We have generated a transgenic mouse with no white fat tissue throughout life. These mice express a dominant-negative protein, termed A-ZIP/F, under the control of the adipose-specific aP2 enhancer/promoter. This protein prevents the DNA binding of B-ZIP transcription factors of both the C/EBP and Jun families. The transgenic mice (named A-ZIP/F-1) have no white adipose tissue and dramatically reduced amounts of brown adipose tissue, which is inactive. They are initially growth delayed, but by week 12, surpass their littermates in weight. The mice eat, drink, and urinate copiously, have decreased fecundity, premature death, and frequently die after anesthesia. The physiological consequences of having no white fat tissue are profound. The liver is engorged with lipid, and the internal organs are enlarged. The mice are diabetic, with reduced leptin (20-fold) and elevated serum glucose (3-fold), insulin (50- to 400-fold), free fatty acids (2-fold), and triglycerides (3- to 5-fold). The A-ZIP/F-1 phenotype suggests a mouse model for the human disease lipoatrophic diabetes (Seip-Berardinelli syndrome), indicating that the lack of fat can cause diabetes. The myriad of consequences of having no fat throughout development can be addressed with this model.

784 citations

Journal ArticleDOI
TL;DR: Liver PPARγ regulates triglyceride homeostasis, contributing to hepatic steatosis, but protecting other tissues from triglyceride accumulation and insulin resistance, suggesting that adipose tissue is the major site of thiazolidinedione action in typical mice with adipOSE tissue.

713 citations

Journal ArticleDOI
TL;DR: These results are the first to provide in vivo evidence of significant roles for PPARβ in development, myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.
Abstract: In the past 10 years, specific roles for peroxisome proliferator-activated receptor α (PPARα) and PPARγ have emerged while information defining PPARβ-dependent processes is lacking. PPARs are members of the nuclear receptor superfamily (34). The three PPARs exhibit unique tissue distribution, are encoded by separate genes in all species examined to date, and are designated by the subtypes α, β (δ, NUC1), and γ (14, 18, 34, 47, 48). Acting as regulatory transcription factors, the PPARs heterodimerize with retinoid X receptors and modulate gene expression in target genes containing peroxisome proliferator-responsive elements (PPREs) in response to ligand activation. The three PPARs have related but distinct activities. Activation of PPARα can occur as a result of cold shock (19), food restriction (26), dietary fatty acids (44), and treatment with the hypolipidemic fibrate class of drugs (31). Peroxisomal and mitochondrial β-oxidizing enzymes, microsomal ω-oxidizing enzymes, hepatic fatty acid binding protein, carnitine palmitoyltransferases, and a number of apolipoproteins are all regulated by PPARα ligands/activators (3, 26, 31, 38, 41, 44). These data, obtained in part from the PPARα-null mouse, provide strong in vivo evidence that PPARα regulates lipid metabolism by regulating gene expression of numerous proteins which are clinically relevant for a number of diseases including diabetes, obesity, and atherosclerosis. Another PPAR isoform, PPARγ, is required for adipocyte differentiation and regulation of adipocyte-specific genes such as the gene for adipocyte fatty acid binding protein aP2 (47). Similar to PPARα, PPARγ is activated by specific ligands, most notably the thiazolidinedione drugs used for type 2 diabetes therapy (32). The phenotype of a PPARγ-null mouse line is embryo lethal due in part to disrupted placental function (4). Tetraploid rescue experiments to bypass the placental defect confirmed an in vivo role for the receptor in adipogenesis (4). Analysis of heterozygotes and chimeras also established a role for PPARγ in adipocyte function and glucose homeostasis (29, 45). Thus, it is clear from null mouse studies that there are distinct metabolic roles for PPARα and PPARγ. The function of PPARβ has remained elusive. While PPARβ is ubiquitously expressed, some tissues express relatively higher levels of the mRNA including the brain, adipose tissue, and skin (2, 8). Expression of PPARβ is considerably higher in the developing neural tube and the epidermis during rat development (9). No target genes that are controlled only by PPARβ have been identified, but activators for PPARβ including fatty acids (27), bezafibrate (28), and a furan-conjugated linoleic acid metabolite (39) are reported to activate reporter gene constructs containing PPREs through PPARβ. Despite the lack of a specific PPARβ ligand to induce activation, there are several reports suggesting roles for PPARβ in adipocyte differentiation (5), brain function (51), epidermal differentiation (37), uterine implantation (33), and colon cancer (20). In large part, these studies are correlative associations; definitive proof for PPARβ function requires the use of a null mouse model. In the present study, a PPARβ-null mouse was generated and characterized to identify physiological functions dependent on PPARβ.

681 citations

Journal ArticleDOI
TL;DR: The data reveal a major role for perilipin in adipose lipid metabolism and suggest perilipIn as a potential target for attacking problems associated with obesity.
Abstract: Perilipin coats the lipid droplets of adipocytes and is thought to have a role in regulating triacylglycerol hydrolysis. To study the role of perilipin in vivo, we have created a perilipin knockout mouse. Perilipin null (peri−/−) and wild-type (peri+/+) mice consume equal amounts of food, but the adipose tissue mass in the null animals is reduced to ≈30% of that in wild-type animals. Isolated adipocytes of perilipin null mice exhibit elevated basal lipolysis because of the loss of the protective function of perilipin. They also exhibit dramatically attenuated stimulated lipolytic activity, indicating that perilipin is required for maximal lipolytic activity. Plasma leptin concentrations in null animals were greater than expected for the reduced adipose mass. The peri−/− animals have a greater lean body mass and increased metabolic rate but they also show an increased tendency to develop glucose intolerance and peripheral insulin resistance. When fed a high-fat diet, the perilipin null animals are resistant to diet-induced obesity but not to glucose intolerance. The data reveal a major role for perilipin in adipose lipid metabolism and suggest perilipin as a potential target for attacking problems associated with obesity.

658 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
22 Oct 1998-Nature
TL;DR: The role of leptin in the control of body weight and its relevance to the pathogenesis of obesity are reviewed.
Abstract: The assimilation, storage and use of energy from nutrients constitute a homeostatic system that is essential for life In vertebrates, the ability to store sufficient quantities of energy-dense triglyceride in adipose tissue allows survival during the frequent periods of food deprivation encountered during evolution However, the presence of excess adipose tissue can be maladaptive A complex physiological system has evolved to regulate fuel stores and energy balance at an optimum level Leptin, a hormone secreted by adipose tissue, and its receptor are integral components of this system Leptin also signals nutritional status to several other physiological systems and modulates their function Here we review the role of leptin in the control of body weight and its relevance to the pathogenesis of obesity

5,335 citations

Journal ArticleDOI
13 Dec 2001-Nature
TL;DR: The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide, and tissues such as muscle, fat and liver become less responsive or resistant to insulin.
Abstract: The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

4,935 citations

Journal ArticleDOI
TL;DR: It is concluded that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy and that the replenishment of adiponECTin might provide a novel treatment modality for insulin resistance and type 2 diabetes.
Abstract: Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.

4,845 citations

Journal ArticleDOI
TL;DR: It is suggested that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Abstract: Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.

4,752 citations