scispace - formally typeset
Search or ask a question
Author

Olaf Ronneberger

Other affiliations: Google, University of Jena, German Cancer Research Center  ...read more
Bio: Olaf Ronneberger is an academic researcher from University of Freiburg. The author has contributed to research in topics: Segmentation & Image segmentation. The author has an hindex of 45, co-authored 140 publications receiving 60179 citations. Previous affiliations of Olaf Ronneberger include Google & University of Jena.


Papers
More filters
Journal ArticleDOI
TL;DR: A grand challenge to objectively compare algorithms based on a clinically representative multi-center data set of three diagnostic groups, finding the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity.

290 citations

Journal ArticleDOI
TL;DR: This study reveals at cellular resolution the complete set of projections of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae and identifies an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon.
Abstract: Essential components of animal behaviour are modulated by dopaminergic (DA) and noradrenergic circuitry. In this study, we reveal at cellular resolution the complete set of projections ('projectome') of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae. The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry. These findings suggest a major role in the modulation of physiology and behaviour for otp-dependent DA neurons, which correlate with the mammalian A11 group. We further identified an endogenous subpallial DA system that not only provides most of the local DA projections, but also connects to the ventral diencephalon. The catecholaminergic projectome map provides a framework to understand the evolution and function of these neuromodulatory systems.

270 citations

Journal ArticleDOI
TL;DR: Based on the quantitative evaluation results, it is believed automatic dental radiography analysis is still a challenging and unsolved problem and the datasets and the evaluation software are made available to the research community, further encouraging future developments in this field.

246 citations

Journal ArticleDOI
12 Oct 2005-Analyst
TL;DR: This work has shown that micro-Raman spectroscopy in combination with a support vector machine is an extremely capable approach for a fast and reliable, non-destructive online identification of single bacteria belonging to different genera.
Abstract: Microbial contamination is not only a medical problem, but also plays a large role in pharmaceutical clean room production and food processing technology. Therefore many techniques were developed to achieve differentiation and identification of microorganisms. Among these methods vibrational spectroscopic techniques (IR, Raman and SERS) are useful tools because of their rapidity and sensitivity. Recently we have shown that micro-Raman spectroscopy in combination with a support vector machine is an extremely capable approach for a fast and reliable, non-destructive online identification of single bacteria belonging to different genera. In order to simulate different environmental conditions we analyzed in this contribution different Staphylococcus strains with varying cultivation conditions in order to evaluate our method with a reliable dataset. First, micro-Raman spectra of the bulk material and single bacterial cells that were grown under the same conditions were recorded and used separately for a distinct chemotaxonomic classification of the strains. Furthermore Raman spectra were recorded from single bacterial cells that were cultured under various conditions to study the influence of cultivation on the discrimination ability. This dataset was analyzed both with a hierarchical cluster analysis (HCA) and a support vector machine (SVM).

223 citations

Posted Content
TL;DR: A 3D U-Net architecture that achieves performance similar to experts in delineating a wide range of head and neck OARs is demonstrated that could improve the effectiveness of radiotherapy pathways.
Abstract: Over half a million individuals are diagnosed with head and neck cancer each year worldwide Radiotherapy is an important curative treatment for this disease, but it requires manual time consuming delineation of radio-sensitive organs at risk (OARs) This planning process can delay treatment, while also introducing inter-operator variability with resulting downstream radiation dose differences While auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying and achieving expert performance remain Adopting a deep learning approach, we demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck OARs commonly segmented in clinical practice The model was trained on a dataset of 663 deidentified computed tomography (CT) scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus OAR definitions We demonstrate the model's clinical applicability by assessing its performance on a test set of 21 CT scans from clinical practice, each with the 21 OARs segmented by two independent experts We also introduce surface Dice similarity coefficient (surface DSC), a new metric for the comparison of organ delineation, to quantify deviation between OAR surface contours rather than volumes, better reflecting the clinical task of correcting errors in the automated organ segmentations The model's generalisability is then demonstrated on two distinct open source datasets, reflecting different centres and countries to model training With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways

219 citations


Cited by
More filters
Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper exploits the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost and achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles.
Abstract: Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But pyramid representations have been avoided in recent object detectors that are based on deep convolutional networks, partially because they are slow to compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

16,727 citations

Journal ArticleDOI
TL;DR: Quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures, including FCN and DeconvNet.
Abstract: We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1] . The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3] , DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/ .

13,468 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: Conditional adversarial networks are investigated as a general-purpose solution to image-to-image translation problems and it is demonstrated that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pix2pix software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.

11,958 citations

Posted Content
TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large number of internet users (many of them artists) have posted their own experiments with our system, further demonstrating its wide applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.

11,127 citations

Journal ArticleDOI
15 Jul 2021-Nature
TL;DR: For example, AlphaFold as mentioned in this paper predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture. But the accuracy is limited by the fact that no homologous structure is available.
Abstract: Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1–4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’8—has been an important open research problem for more than 50 years9. Despite recent progress10–14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm. AlphaFold predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture.

10,601 citations