scispace - formally typeset
Search or ask a question
Author

Olaya Rendueles

Bio: Olaya Rendueles is an academic researcher from Pasteur Institute. The author has contributed to research in topics: Population & Virulence. The author has an hindex of 15, co-authored 32 publications receiving 1411 citations. Previous affiliations of Olaya Rendueles include ETH Zurich & Centre national de la recherche scientifique.
Topics: Population, Virulence, Biology, Biofilm, Klebsiella

Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them is undertaken.
Abstract: The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30-40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.

380 citations

Journal ArticleDOI
TL;DR: This review presents available data on nonbiocidal molecules and provides a new perspective on competitive interactions within biofilms that could lead to antibiofilm strategies of potential biomedical interest.
Abstract: Multi-species biofilm communities are environments in which complex but ill understood exchanges between bacteria occur. Although monospecies cultures are still widely used in the laboratory, new approaches have been undertaken to study interspecies interactions within mixed communities. This review describes our current understanding of competitive relationships involving nonbiocidal biosurfactants, enzymes, and metabolites produced by bacteria and other microorganisms. These molecules target all steps of biofilm formation, ranging from inhibition of initial adhesion to matrix degradation, jamming of cell–cell communications, and induction of biofilm dispersion. This review presents available data on nonbiocidal molecules and provides a new perspective on competitive interactions within biofilms that could lead to antibiofilm strategies of potential biomedical interest.

260 citations

Journal ArticleDOI
TL;DR: The composition, modes of action and potential biological roles of antibiofilm polysaccharides recently identified in bacteria and eukarya are discussed, some of which may have technological applications as antibioFilm agents in industry and medicine.
Abstract: Bacterial extracellular polysaccharides have been shown to mediate many of the cell-to-cell and cell-to-surface interactions that are required for the formation, cohesion and stabilization of bacterial biofilms. However, recent studies have identified several bacterial polysaccharides that inhibit biofilm formation by a wide spectrum of bacteria and fungi both in vitro and in vivo. This review discusses the composition, modes of action and potential biological roles of antibiofilm polysaccharides recently identified in bacteria and eukarya. Some of these molecules may have technological applications as antibiofilm agents in industry and medicine.

222 citations

Journal ArticleDOI
TL;DR: A zebra fish model of controlled co-infection in which germ-free zebrafish raised on axenic living protozoa enabled the study of interactions between host and commensal and pathogenic bacteria is developed and provides new insights into the molecular events underlying the probiotic effect.
Abstract: The beneficial contribution of commensal bacteria to host health and homeostasis led to the concept that exogenous non-pathogenic bacteria called probiotics could be used to limit disease caused by pathogens. However, despite recent progress using gnotobiotic mammal and invertebrate models, mechanisms underlying protection afforded by commensal and probiotic bacteria against pathogens remain poorly understood. Here we developed a zebrafish model of controlled co-infection in which germ-free zebrafish raised on axenic living protozoa enabled the study of interactions between host and commensal and pathogenic bacteria. We screened enteric fish pathogens and identified Edwardsiella ictaluri as a virulent strain inducing a strong inflammatory response and rapid mortality in zebrafish larvae infected by the natural oro-intestinal route. Using mortality induced by infection as a phenotypic read-out, we pre-colonized zebrafish larvae with 37 potential probiotic bacterial strains and screened for survival upon E. ictaluri infection. We identified 3 robustly protective strains, including Vibrio parahaemolyticus and 2 Escherichia coli strains. We showed that the observed protective effect of E. coli was not correlated with a reduced host inflammatory response, nor with the release of biocidal molecules by protective bacteria, but rather with the presence of specific adhesion factors such as F pili that promote the emergence of probiotic bacteria in zebrafish larvae. Our study therefore provides new insights into the molecular events underlying the probiotic effect and constitutes a potentially high-throughput in vivo approach to the study of the molecular basis of pathogen exclusion in a relevant model of vertebrate oro-intestinal infection.

111 citations

Journal ArticleDOI
TL;DR: An atypically large outbreak of Elizabethkingia anophelis infections occurred in Wisconsin and it is shown that it was caused by a single strain with thirteen characteristic genomic regions, providing a dramatic example of the potential impact of pathogen evolutionary dynamics on infectious disease epidemiology.
Abstract: An atypically large outbreak of Elizabethkingia anophelis infections occurred in Wisconsin Here we show that it was caused by a single strain with thirteen characteristic genomic regions Strikingly, the outbreak isolates show an accelerated evolutionary rate and an atypical mutational spectrum Six phylogenetic sub-clusters with distinctive temporal and geographic dynamics are revealed, and their last common ancestor existed approximately one year before the first recognized human infection Unlike other E anophelis, the outbreak strain had a disrupted DNA repair mutY gene caused by insertion of an integrative and conjugative element This genomic change probably contributed to the high evolutionary rate of the outbreak strain and may have increased its adaptability, as many mutations in protein-coding genes occurred during the outbreak This unique discovery of an outbreak caused by a naturally occurring mutator bacterial pathogen provides a dramatic example of the potential impact of pathogen evolutionary dynamics on infectious disease epidemiology

109 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: The fundamental role of the biofilm matrix is considered, describing how the characteristic features of biofilms — such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials — all rely on the structural and functional properties of the matrix.
Abstract: Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.

3,277 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
TL;DR: This review summarises both historical and recent scientific data in support of the known biofilm resistance and tolerance mechanisms and suggestions for future work in the field are provided.
Abstract: Biofilms are surface-attached groups of microbial cells encased in an extracellular matrix that are significantly less susceptible to antimicrobial agents than non-adherent, planktonic cells. Biofilm-based infections are, as a result, extremely difficult to cure. A wide range of molecular mechanisms contribute to the high degree of recalcitrance that is characteristic of biofilm communities. These mechanisms include, among others, interaction of antimicrobials with biofilm matrix components, reduced growth rates and the various actions of specific genetic determinants of antibiotic resistance and tolerance. Alone, each of these mechanisms only partially accounts for the increased antimicrobial recalcitrance observed in biofilms. Acting in concert, however, these defences help to ensure the survival of biofilm cells in the face of even the most aggressive antimicrobial treatment regimens. This review summarises both historical and recent scientific data in support of the known biofilm resistance and tolerance mechanisms. Additionally, suggestions for future work in the field are provided.

956 citations