scispace - formally typeset
Search or ask a question
Author

Oleg L. Polyansky

Bio: Oleg L. Polyansky is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Ab initio & Potential energy surface. The author has an hindex of 50, co-authored 179 publications receiving 8642 citations. Previous affiliations of Oleg L. Polyansky include University of Arizona & N. I. Lobachevsky State University of Nizhny Novgorod.


Papers
More filters
Journal ArticleDOI
TL;DR: The ExoMol database as mentioned in this paper provides extensive line lists of molecular transitions which are valid over extended temperature ranges, including lifetimes of individual states, temperature-dependent cooling functions, Lande g-factors, partition functions, cross sections, k-coefficients and transition dipoles with phase relations.

421 citations

Journal ArticleDOI
24 Jan 2003-Science
TL;DR: This work performed exceptionally large electronic structure calculations and considered a variety of effects, including quantum electrodynamics, which have routinely been neglected in studies of small many-electron molecules, to achieve first-principles calculations that approach experimental accuracy.
Abstract: The spectrum of water vapor is of fundamental importance for a variety of processes, including the absorption and retention of sunlight in Earth's atmosphere. Therefore, there has long been an urgent need for a robust and accurate predictive model for this spectrum. In our work on the high-resolution spectrum of water, we report first-principles calculations that approach experimental accuracy. To achieve this, we performed exceptionally large electronic structure calculations and considered a variety of effects, including quantum electrodynamics, which have routinely been neglected in studies of small many-electron molecules. The high accuracy of the resulting ab initio procedure is demonstrated for the main isotopomers of water.

295 citations

Journal ArticleDOI
TL;DR: In this article, a line list for H216O is presented, which includes transitions between rotational-vibrational energy levels up to 41 000 cm-1 and rotational angular momentum J up to 72.
Abstract: A new line list for H216O is presented. This line list, which is called POKAZATEL, includes transitions between rotational-vibrational energy levels up to 41 000 cm-1and is the most complete to date. The potential energy surface (PES) used for producing the line list was obtained by fitting a high-quality ab initio PES to experimental energy levels with energies of 41 000 cm-1and for rotational excitations up to J = 5. The final line list comprises all energy levels up to 41 000 cm-1and rotational angular momentum J up to 72. An accurate ab initio dipole moment surface was used for the calculation of line intensities and reproduces high-precision experimental intensity data with an accuracy close to 1 per cent. The final line list uses empirical energy levels, whenever they are available, to ensure that line positions are reproduced as accurately as possible. The POKAZATEL line list contains over 5 billion transitions and is available from the ExoMol website (www.exomol.com) and the CDS data base.

287 citations

Journal ArticleDOI
TL;DR: Experimentally derived energy levels for 12, 248 vibration-rotation states of the H2 16O isotopomer of water, more than doubling the number in previous, disparate, compilations are presented in this article.
Abstract: Experimentally derived energy levels are presented for 12 248 vibration–rotation states of the H2 16O isotopomer of water, more than doubling the number in previous, disparate, compilations. For each level an error and reference to source data is given. The levels have been checked using energy levels derived from sophisticated variational calculations. These levels span 107 vibrational states including members of all polyads up to and including 8v. Band origins, in some cases estimates, are presented for 101 vibrational modes.

250 citations

Journal ArticleDOI
TL;DR: The DVR3D program suite as discussed by the authors calculates energy levels, wavefunctions, and where appropriate dipole transition moments, for rotating and vibrating triatomic molecules, using a Discrete Variable Representation (DVR) based on Gauss-Jacobi and Gauss−Laguerre quadrature for all 3 internal coordinates and thus yields a fully point-wise representation of the wave functions.

250 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

Journal ArticleDOI
TL;DR: In this article, an extensive grid of spherically-symmetric models (supplemented with plane-parallel ones for the highest surface gravities), built on up-to-date atomic and molecular data, is presented.
Abstract: Context. In analyses of stellar spectra and colours, and for the analysis of integrated light from galaxies, a homogeneous grid of model atmospheres of late-type stars and corresponding flux spectra is needed. Aims. We construct an extensive grid of spherically-symmetric models (supplemented with plane-parallel ones for the highest surface gravities), built on up-to-date atomic and molecular data, and make it available for public use. Methods. The most recent version of the MARCS program is used. Results. We present a grid of about 104 model atmospheres for stars with 2500K <= T-eff <= 8000 K, -1 <= log g = log (GM/R-2) <= 5 (cgs) with various masses and radii, -5 <= [Me/H] <= + 1, with [alpha/Fe] = 0.0 and 0.4 and different choices of C and N abundances. This includes "CN-cycled" models with C/N=4.07 (solar), 1.5 and 0.5, C/O ranging from 0.09 to (normally) 5.0 to also represent stars of spectral types R, S and N, and with 1.0 <= xi(t) = 5km s(-1). We also list thermodynamic quantities (T, P-g, P-e, rho, partial pressures of molecules, etc.) and provide them on the World Wide Web, as well as calculated fluxes in approximately 108 000 wavelength points. Underlying assumptions in addition to 1D stratification (spherical or plane-parallel) include hydrostatic equilibrium, mixing-length convection and local thermodynamic equilibrium. We discuss a number of general properties of the models, in particular in relation to the effects of changing abundances, of blanketing, and of sphericity. We illustrate positive and negative feedbacks between sphericity and molecular blanketing. We compare the models with those of other available grids and find excellent agreement with planeparallel models of Castelli & Kurucz (if convection is treated consistently) within the overlapping parameter range. Although there are considerable departures from the spherically-symmetric NextGen models, the agreement with more recent PHOENIX models is gratifying. Conclusions. The models of the grid show considerable regularities, but some interesting departures from general patterns occur for the coolest models due to the molecular opacities. We have tested a number of approximate "rules of thumb" concerning effects of blanketing and sphericity and often found them to be astonishingly accurate. Some interesting new phenomena have been discovered and explored, such as the intricate coupling between blanketing and sphericity, and the strong effects of carbon enhancement on metal-poor models. We give further details of line absorption data for molecules, as well as details of models and comparisons with observations in subsequent papers.

2,411 citations

Journal ArticleDOI
TL;DR: In this paper, a new molecular spectroscopic database for high-temperature modeling of the spectra of molecules in the gas phase is described, called HITEMP, which is analogous to the HITRAN database but encompasses many more bands and transitions than HitRAN for the absorbers H2O, CO2, CO, NO and OH.
Abstract: A new molecular spectroscopic database for high-temperature modeling of the spectra of molecules in the gas phase is described. This database, called HITEMP, is analogous to the HITRAN database but encompasses many more bands and transitions than HITRAN for the absorbers H2O, CO2, CO, NO, and OH. HITEMP provides users with a powerful tool for a great many applications: astrophysics, planetary and stellar atmospheres, industrial processes, surveillance, non-local thermodynamic equilibrium problems, and investigating molecular interactions, to name a few. The sources and implementation of the spectroscopic parameters incorporated into HITEMP are discussed.

1,715 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a series of nongray calculations of the atmospheres, spectra, colors, and evolution of extrasolar giant planets (EGPs) and brown dwarfs for effective temperatures below 1300 K.
Abstract: We present the results of a new series of nongray calculations of the atmospheres, spectra, colors, and evolution of extrasolar giant planets (EGPs) and brown dwarfs for effective temperatures below 1300 K This theory encompasses most of the mass/age parameter space occupied by substellar objects and is the first spectral study down to 100 K These calculations are in aid of the multitude of searches being conducted or planned around the world for giant planets and brown dwarfs and reveal the exotic nature of the class Generically, absorption by H2 at longer wavelengths and H2O opacity windows at shorter wavelengths conspire to redistribute flux blueward Below 1200 K, methane is the dominant carbon bearing molecule and is a universal diagnostic feature of EGP and brown dwarf spectra We find that the primary bands in which to search are Z (~105 ?m), J (~12 ?m), H (~16 ?m), K (~22 ?m), M (~5 ?m), and N (~10 ?m), that enhancements of the emergent flux over blackbody values, in particular in the near infrared, can be by many orders of magnitude, and that the infrared colors of EGPs and brown dwarfs are much bluer than previously believed In particular, relative to J and H, the K band flux is reduced by CH4 and H2 absorption Furthermore, we conclude that for Teff's below 1200 K most or all true metals may be sequestered below the photosphere, that an interior radiative zone is a generic feature of substellar objects, and that clouds of H2O and NH3 are formed for Teff's below ~400 and ~200 K, respectively This study is done for solar-metallicity objects in isolation and does not include the effects of stellar insulation Nevertheless, it is a comprehensive attempt to bridge the gap between the planetary and stellar realms and to develop a nongray theory of objects from 03MJ (Saturn) to 70MJ (~007 M?) We find that the detection ranges for brown dwarf/EGP discovery of both ground- and space-based telescopes are larger than previously estimated

1,478 citations