scispace - formally typeset
Search or ask a question
Author

Oleg Mochalov

Bio: Oleg Mochalov is an academic researcher from Samara State University. The author has contributed to research in topics: Bronze Age & Population. The author has an hindex of 7, co-authored 12 publications receiving 2273 citations.
Topics: Bronze Age, Population, Ancient DNA, Samara, Ivanovich

Papers
More filters
Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: In this paper, the authors generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms.
Abstract: We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.

1,332 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: A genome-wide scan for selection using ancient DNA is reported, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data.
Abstract: Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

1,083 citations

Journal ArticleDOI
Vagheesh M. Narasimhan1, Nick Patterson2, Nick Patterson3, Priya Moorjani4, Nadin Rohland3, Nadin Rohland1, Rebecca Bernardos1, Swapan Mallick1, Swapan Mallick5, Swapan Mallick3, Iosif Lazaridis1, Nathan Nakatsuka1, Nathan Nakatsuka6, Iñigo Olalde1, Mark Lipson1, Alexander M. Kim1, Luca M. Olivieri, Alfredo Coppa7, Massimo Vidale8, James Mallory9, Vyacheslav Moiseyev10, Egor Kitov11, Egor Kitov10, Janet Monge12, Nicole Adamski1, Nicole Adamski5, Neel Alex4, Nasreen Broomandkhoshbacht1, Nasreen Broomandkhoshbacht5, Francesca Candilio13, Kimberly Callan5, Kimberly Callan1, Olivia Cheronet14, Olivia Cheronet13, Brendan J. Culleton15, Matthew Ferry1, Matthew Ferry5, Daniel Fernandes, Suzanne Freilich14, Beatriz Gamarra13, Daniel Gaudio13, Mateja Hajdinjak16, Eadaoin Harney5, Eadaoin Harney1, Thomas K. Harper15, Denise Keating13, Ann Marie Lawson5, Ann Marie Lawson1, Matthew Mah5, Matthew Mah3, Matthew Mah1, Kirsten Mandl14, Megan Michel1, Megan Michel5, Mario Novak13, Jonas Oppenheimer5, Jonas Oppenheimer1, Niraj Rai17, Niraj Rai18, Kendra Sirak13, Kendra Sirak1, Kendra Sirak19, Viviane Slon16, Kristin Stewardson1, Kristin Stewardson5, Fatma Zalzala5, Fatma Zalzala1, Zhao Zhang1, Gaziz Akhatov, Anatoly N. Bagashev, Alessandra Bagnera, Bauryzhan Baitanayev, Julio Bendezu-Sarmiento20, Arman A. Bissembaev, Gian Luca Bonora, T Chargynov21, T. A. Chikisheva10, Petr K. Dashkovskiy22, Anatoly P. Derevianko10, Miroslav Dobeš23, Katerina Douka16, Katerina Douka24, Nadezhda Dubova10, Meiram N. Duisengali, Dmitry Enshin, Andrey Epimakhov25, Alexey Fribus26, Dorian Q. Fuller27, Dorian Q. Fuller28, Alexander Goryachev, Andrey Gromov10, S. P. Grushin22, Bryan Hanks29, Margaret A. Judd29, Erlan Kazizov, Aleksander Khokhlov30, Aleksander P. Krygin, Elena Kupriyanova31, Pavel Kuznetsov30, Donata Luiselli32, Farhod Maksudov33, Aslan M. Mamedov, Talgat B. Mamirov, Christopher Meiklejohn34, Deborah C. Merrett35, Roberto Micheli, Oleg Mochalov30, Samariddin Mustafokulov33, Ayushi Nayak16, Davide Pettener32, Richard Potts36, Dmitry Razhev, Marina Petrovna Rykun37, Stefania Sarno32, Tatyana M. Savenkova, Kulyan Sikhymbaeva, Sergey Mikhailovich Slepchenko, Oroz A. Soltobaev21, Nadezhda Stepanova10, Svetlana V. Svyatko10, Svetlana V. Svyatko9, Kubatbek Tabaldiev, Maria Teschler-Nicola38, Maria Teschler-Nicola14, Alexey A. Tishkin22, Vitaly V. Tkachev, Sergey Vasilyev10, Petr Velemínský39, Dmitriy Voyakin, Antonina Yermolayeva, Muhammad Zahir40, Muhammad Zahir16, Valery S. Zubkov, A. V. Zubova10, Vasant Shinde41, Carles Lalueza-Fox42, Matthias Meyer16, David W. Anthony43, Nicole Boivin16, Kumarasamy Thangaraj17, Douglas J. Kennett15, Douglas J. Kennett44, Michael D. Frachetti45, Ron Pinhasi14, Ron Pinhasi13, David Reich 
06 Sep 2019-Science
TL;DR: It is shown that Steppe ancestry then integrated further south in the first half of the second millennium BCE, contributing up to 30% of the ancestry of modern groups in South Asia, supporting the idea that the archaeologically documented dispersal of domesticates was accompanied by the spread of people from multiple centers of domestication.
Abstract: By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.

354 citations

Posted ContentDOI
Vagheesh M. Narasimhan1, Nick Patterson2, Nick Patterson3, Priya Moorjani4, Iosif Lazaridis1, Mark Lipson1, Swapan Mallick3, Swapan Mallick5, Nadin Rohland3, Rebecca Bernardos1, Alexander M. Kim1, Nathan Nakatsuka6, Iñigo Olalde1, Alfredo Coppa7, James Mallory8, Vyacheslav Moiseyev9, Janet Monge10, Luca M. Olivieri, Nicole Adamski5, Nasreen Broomandkhoshbacht5, Francesca Candilio10, Olivia Cheronet11, Olivia Cheronet12, Brendan J. Culleton13, Matthew Ferry5, Daniel Fernandes, Beatriz Gamarra11, Daniel Gaudio11, Mateja Hajdinjak14, Eadaoin Harney5, Thomas K. Harper13, Denise Keating11, Ann Marie Lawson5, Megan Michel5, Mario Novak11, Jonas Oppenheimer5, Niraj Rai15, Niraj Rai16, Kendra Sirak17, Kendra Sirak1, Kendra Sirak11, Viviane Slon14, Kristin Stewardson5, Zhao Zhang1, Gaziz Akhatov, Anatoly N. Bagashev, Bauryzhan Baitanayev, Gian Luca Bonora, T. A. Chikisheva9, Anatoly P. Derevianko9, Dmitry Enshin, Katerina Douka14, Katerina Douka18, Nadezhda Dubova9, Andrey Epimakhov19, Suzanne Freilich12, Dorian Q. Fuller20, Dorian Q. Fuller21, Alexander Goryachev, Andrey Gromov9, Bryan Hanks22, Margaret A. Judd22, Erlan Kazizov, Aleksander Khokhlov23, Egor Kitov24, Egor Kitov9, Elena Kupriyanova25, Pavel Kuznetsov23, Donata Luiselli26, Farhod Maksudov27, Christopher Meiklejohn28, Deborah C. Merrett29, Roberto Micheli, Oleg Mochalov23, Muhammad Zahir30, Muhammad Zahir14, Samariddin Mustafokulov27, Ayushi Nayak14, Marina Petrovna Rykun31, Davide Pettener26, Richard Potts32, Dmitry Razhev, Stefania Sarno26, Kulyan Sikhymbaeva, Sergey Mikhailovich Slepchenko, Nadezhda Stepanova9, Svetlana V. Svyatko8, Svetlana V. Svyatko9, Sergey Vasilyev9, Massimo Vidale33, Dmitriy Voyakin, Antonina Yermolayeva, A. V. Zubova9, Vasant Shinde34, Carles Lalueza-Fox35, Matthias Meyer14, David W. Anthony36, Nicole Boivin14, Kumarasamy Thangaraj16, Douglas J. Kennett37, Douglas J. Kennett13, Michael D. Frachetti38, Ron Pinhasi11, Ron Pinhasi12, David Reich 
31 Mar 2018-bioRxiv
TL;DR: The results show how ancestry from the Steppe genetically linked Europe and South Asia in the Bronze Age, and identifies the populations that almost certainly were responsible for spreading Indo-European languages across much of Eurasia.
Abstract: The genetic formation of Central and South Asian populations has been unclear because of an absence of ancient DNA. To address this gap, we generated genome-wide data from 362 ancient individuals, including the first from eastern Iran, Turan (Uzbekistan, Turkmenistan, and Tajikistan), Bronze Age Kazakhstan, and South Asia. Our data reveal a complex set of genetic sources that ultimately combined to form the ancestry of South Asians today. We document a southward spread of genetic ancestry from the Eurasian Steppe, correlating with the archaeologically known expansion of pastoralist sites from the Steppe to Turan in the Middle Bronze Age (2300-1500 BCE). These Steppe communities mixed genetically with peoples of the Bactria Margiana Archaeological Complex (BMAC) whom they encountered in Turan (primarily descendants of earlier agriculturalists of Iran), but there is no evidence that the main BMAC population contributed genetically to later South Asians. Instead, Steppe communities integrated farther south throughout the 2nd millennium BCE, and we show that they mixed with a more southern population that we document at multiple sites as outlier individuals exhibiting a distinctive mixture of ancestry related to Iranian agriculturalists and South Asian hunter-gathers. We call this group Indus Periphery because they were found at sites in cultural contact with the Indus Valley Civilization (IVC) and along its northern fringe, and also because they were genetically similar to post-IVC groups in the Swat Valley of Pakistan. By co-analyzing ancient DNA and genomic data from diverse present-day South Asians, we show that Indus Periphery-related people are the single most important source of ancestry in South Asia—consistent with the idea that the Indus Periphery individuals are providing us with the first direct look at the ancestry of peoples of the IVC—and we develop a model for the formation of present-day South Asians in terms of the temporally and geographically proximate sources of Indus Periphery-related, Steppe, and local South Asian hunter-gatherer-related ancestry. Our results show how ancestry from the Steppe genetically linked Europe and South Asia in the Bronze Age, and identifies the populations that almost certainly were responsible for spreading Indo-European languages across much of Eurasia. One Sentence Summary Genome wide ancient DNA from 357 individuals from Central and South Asia sheds new light on the spread of Indo-European languages and parallels between the genetic history of two sub-continents, Europe and South Asia.

61 citations

Posted ContentDOI
14 Mar 2015-bioRxiv
TL;DR: The first genome-wide scan for selection using ancient DNA is reported, capitalizing on the largest genome- wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data.
Abstract: The arrival of farming in Europe around 8,500 years ago necessitated adaptation to new environments, pathogens, diets, and social organizations. While indirect evidence of adaptation can be detected in patterns of genetic variation in present-day people, ancient DNA makes it possible to witness selection directly by analyzing samples from populations before, during and after adaptation events. Here we report the first genome-wide scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture, who we show were members of the population that was the source of Europe's first farmers, and whose genetic material we extracted by focusing on the DNA-rich petrous bone. We identify genome-wide significant signatures of selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

46 citations


Cited by
More filters
01 Jan 2010
TL;DR: In this paper, the authors show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait, revealing patterns with important implications for genetic studies of common human diseases and traits.
Abstract: Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

1,751 citations

Journal ArticleDOI
TL;DR: Some of the key events in the peopling of the world in the light of the findings of work on ancient DNA are reviewed.
Abstract: Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.

1,365 citations

Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: It is shown that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia.
Abstract: The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.

1,088 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: A genome-wide scan for selection using ancient DNA is reported, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data.
Abstract: Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

1,083 citations

Journal ArticleDOI
TL;DR: The results indicate that diet-sensing, metabolism, and immune defense are important drivers of human-microbiome co-evolution.

774 citations