scispace - formally typeset
Search or ask a question
Author

Oleg N. Martyanov

Bio: Oleg N. Martyanov is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Supercritical fluid & Catalysis. The author has an hindex of 21, co-authored 111 publications receiving 1178 citations. Previous affiliations of Oleg N. Martyanov include Siberian State Aerospace University & Novosibirsk State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the transformation of petroleum asphaltenes in supercritical water was studied and the results of the reaction resulted in the formation of gas products, about 4.3%, and an insoluble residue (coke) with about 48.6% yield.
Abstract: The transformation of petroleum asphaltenes in supercritical water was studied. The experiments were performed in autoclave at temperature 380 °C and pressure 226 atm with stirring for 3 h, medium density was about 0.33 g/cm3. The reaction resulted in the formation of gas products, about 4.3%, and an insoluble residue (coke) with about 48.6% yield. The remaining products were separated into fractions by consecutive dissolution in hexane (30.0%), benzene (10.6%), and chloroform (5.7%). The properties of the obtained products were studied with FT-IR spectrometry and 1H NMR spectroscopy. The method of simulated distillation was used to demonstrate that the fractional composition of the hexane-soluble part of the products is close to the fractional composition of a mixture of the diesel fraction and vacuum gas oil of the corresponding oil in 1:1 ratio. The obtained data support the conclusion that asphaltene cracking proceeds in SCW, with most probable main processes being dealkylation of substituents in the aromatic fragments of molecules and aromatization. This leads to formation of gaseous products and hexane-soluble fraction consisting of lighter aliphatic and aromatic compounds, as well as carbonized solid residue.

90 citations

Journal ArticleDOI
TL;DR: In this paper, the dynamic magnetic properties of two-dimensional periodic Co antidot arrays were studied by $X$-band ferromagnetic resonance, and it was shown that the static magnetic structure in an antidot array depends on the direction of the external field with respect to the symmetry axes of the antidot lattice.
Abstract: The dynamic magnetic properties of two-dimensional periodic Co antidot arrays were studied by $X$-band ferromagnetic resonance. The experimental results on geometrically scaled antidot arrays reveal a strong attenuation of the uniform ferromagnetic resonance mode in comparison to a continuous film, but an excitation of nonuniform in-plane spin-wave modes. Micromagnetic finite-element simulations show that the static magnetic structure in an antidot array depends on the direction of the external field with respect to the symmetry axes of the antidot lattice, even if the external field is strong enough to enforce a technically saturated magnetization state. The analysis gives evidence that characteristic inhomogeneities in the magnetization distribution around the antidots give rise to the changes of the resonance modes with the in-plane direction of the magnetization.

60 citations

Journal ArticleDOI
TL;DR: In this article, a comparative analysis of magnetic properties of the systems based on e-Fe2O3, nanoparticles with different average sizes (from ∼3 to 9 nm) and dispersions is presented.
Abstract: We report the results of comparative analysis of magnetic properties of the systems based on e-Fe2O3, nanoparticles with different average sizes (from ∼3 to 9 nm) and dispersions. The experimental data for nanoparticles higher than 6–8 nm in size are consistent with the available data, specifically, the transition to the magnetically ordered state occurs at a temperature of ∼500 K and the anomalies of magnetic properties observed in the range of 80–150 K correspond to the magnetic transition. At the same time, Mőssbauer and ferromagnetic resonance spectroscopy data as well as the results of static magnetic measurements show that at room temperature all the investigated samples contain e-Fe2O3 particles that exhibit the superparamagnetic behavior. It was established that the magnetic properties of nanoparticles significantly change with a decrease in their size to ∼6 nm. According to high-resolution electron microscopy and Mőssbauer spectroscopy data, the particle structure can be attributed to the e–modif...

51 citations

Journal ArticleDOI
Abstract: Crude oil phase behavior and asphaltene precipitation have been studied by two complementary chemical imaging methods for the first time. ATR-FTIR spectroscopic imaging approach has revealed the chemical composition of agglomerated and precipitated asphaltenes upon dilution with a flocculant. Asphaltenes, containing oxygen and nitrogen heteroatomic functional groups, have been detected to be least stable. Aromatic abundant asphaltenes have been observed to have relatively high solubility in crude oil/heptane blends. NMR imaging approach, capable of imaging in the bulk of crude oil samples, has demonstrated that n-heptane causes aggregation which can lead to the stable suspension or to the sedimentation followed by the formation of deposits, depending on flocculant concentration. These processes have been monitored for small and large amounts of heptane added to crude oil. The data obtained by ATR-FTIR spectroscopic imaging and NMR imaging have been correlated to propose a possible link between the chemica...

49 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles.
Abstract: Nanostructures have attracted huge interest as a rapidly growing class of materials for many applications. Several techniques have been used to characterize the size, crystal structure, elemental composition and a variety of other physical properties of nanoparticles. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed. In addition, given that the significance of nanoparticles in basic research and applications is constantly increasing, it is necessary that researchers from separate fields overcome the challenges in the reproducible and reliable characterization of nanomaterials, after their synthesis and further process (e.g. annealing) stages. The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles. Different characterization techniques are classified according to the concept/group of the technique used, the information they can provide, or the materials that they are destined for. We describe the main characteristics of the techniques and their operation principles and we give various examples of their use, presenting them in a comparative mode, when possible, in relation to the property studied in each case.

910 citations

Journal ArticleDOI
TL;DR: This topical review addresses materials with a periodic modulation of magnetic parameters that give rise to artificially tailored band structures and allow unprecedented control of spin waves in microand nanostructured ferromagnetic materials.
Abstract: Research efforts addressing spin waves (magnons) in micro- and nanostructured ferromagnetic materials have increased tremendously in recent years. Corresponding experimental and theoretical work in magnonics faces significant challenges in that spin-wave dispersion relations are highly anisotropic and different magnetic states might be realized via, for example, the magnetic field history. At the same time, these features offer novel opportunities for wave control in solids going beyond photonics and plasmonics. In this topical review we address materials with a periodic modulation of magnetic parameters that give rise to artificially tailored band structures and allow unprecedented control of spin waves. In particular, we discuss recent achievements and perspectives of reconfigurable magnonic devices for which band structures can be reprogrammed during operation. Such characteristics might be useful for multifunctional microwave and logic devices operating over a broad frequency regime on either the macro- or nanoscale.

535 citations

Journal ArticleDOI
TL;DR: A review of metal-organic frameworks (MOFs) and their applications can be found in this paper, where the advantages of MOF-based hydrogels and aerogels in applications such as sensors, batteries, supercapacitors, adsorbents, catalysts etc.

381 citations

Journal ArticleDOI
TL;DR: The catalytic oxy reforming of methane, which is an energy-efficient process that can produce syngas at extremely high space-time yields, is discussed in this Review.
Abstract: The considerable recent interest in the conversion of stranded methane into transportable liquids as well as fuel cell technology has provided a renewed impetus to the development of efficient processes for the generation of syngas. The production of syngas (CO/H2), a very versatile intermediate, can be the most expensive step in the conversion of methane to value-added liquid fuels. The catalytic oxy reforming of methane, which is an energy-efficient process that can produce syngas at extremely high space–time yields, is discussed in this Review. As long-term catalyst performance is crucial for the wide-scale commercialization of this process, catalyst-related studies are abundant. Correspondingly, herein, emphasis is placed on discussing the different issues related to the development of catalysts for oxy reforming. Important aspects of related processes such as catalytic oxy-steam, oxy-CO2, and oxy-steam-CO2 processes will also be discussed.

300 citations

Journal ArticleDOI
TL;DR: In this critical review, the recent research findings and progress in the interfacial sciences related to unconventional petroleum production are critically reviewed and the chemistry of unconventional oils, liberation mechanisms of oil from host rocks and mechanisms of emulsion stability and destabilization in unconventional oil production systems are discussed in detail.
Abstract: With the ever increasing demand for energy to meet the needs of growth in population and improvement in the living standards in particular in developing countries, the abundant unconventional oil reserves (about 70% of total world oil), such as heavy oil, oil/tar sands and shale oil, are playing an increasingly important role in securing global energy supply. Compared with the conventional reserves unconventional oil reserves are characterized by extremely high viscosity and density, combined with complex chemistry. As a result, petroleum production from unconventional oil reserves is much more difficult and costly with more serious environmental impacts. As a key underpinning science, understanding the interfacial phenomena involved in unconventional petroleum production, such as oil liberation from host rocks, oil–water emulsions and demulsification, is critical for developing novel processes to improve oil production while reducing GHG emission and other environmental impacts at a lower operating cost. In the past decade, significant efforts and advances have been made in applying the principles of interfacial sciences to better understand complex unconventional oil-systems, while many environmental and production challenges remain. In this critical review, the recent research findings and progress in the interfacial sciences related to unconventional petroleum production are critically reviewed. In particular, the chemistry of unconventional oils, liberation mechanisms of oil from host rocks and mechanisms of emulsion stability and destabilization in unconventional oil production systems are discussed in detail. This review also seeks to summarize the current state-of-the-art characterization techniques and brings forward the challenges and opportunities for future research in this important field of physical chemistry and petroleum.

263 citations