scispace - formally typeset
Search or ask a question
Author

Oleg Shpyrko

Bio: Oleg Shpyrko is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Wetting & Monolayer. The author has an hindex of 31, co-authored 123 publications receiving 3661 citations. Previous affiliations of Oleg Shpyrko include Harvard University & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools and their successful applications and their fundamental insights into these scientific questions.
Abstract: Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies In the past decade, advancement of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales Synchrotron X-ray techniques stand out as one of the most effective methods that allow for near

363 citations

Journal ArticleDOI
19 Jun 2015-Science
TL;DR: Three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging opens a powerful avenue for facilitating improvement and rational design of nanostructured materials.
Abstract: Topological defects can markedly alter nanomaterial properties. This presents opportunities for “defect engineering,” where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive. We report three-dimensional imaging of dislocation dynamics in individual battery cathode nanoparticles under operando conditions using Bragg coherent diffractive imaging. Dislocations are static at room temperature and mobile during charge transport. During the structural phase transformation, the lithium-rich phase nucleates near the dislocation and spreads inhomogeneously. The dislocation field is a local probe of elastic properties, and we find that a region of the material exhibits a negative Poisson’s ratio at high voltage. Operando dislocation imaging thus opens a powerful avenue for facilitating improvement and rational design of nanostructured materials.

312 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reveal the link between voltage fade and nucleation of a mobile dislocation network in the oxide nanoparticles, offering design ideas to restore the voltage in the battery.
Abstract: Lithium-rich layered oxides (LRLO) are among the leading candidates for the next-generation cathode material for energy storage, delivering 50% excess capacity over commercially used compounds. Despite excellent prospects, voltage fade has prevented effective use of the excess capacity, and a major challenge has been a lack of understanding of the mechanisms underpinning the voltage fade. Here, using operando three-dimensional Bragg coherent diffractive imaging, we directly observe the nucleation of a mobile dislocation network in LRLO nanoparticles. The dislocations form more readily in LRLO as compared with a classical layered oxide, suggesting a link between the defects and voltage fade. We show microscopically how the formation of partial dislocations contributes to the voltage fade. The insights allow us to design and demonstrate an effective method to recover the original high-voltage functionality. Our findings reveal that the voltage fade in LRLO is reversible and call for new paradigms for improved design of oxygen-redox active materials. Voltage fade is a major obstacle for the efficient use of lithium-rich layered oxide materials in batteries. Here, the authors reveal the link between voltage fade and nucleation of a mobile dislocation network in the oxide nanoparticles, offering design ideas to restore the voltage.

266 citations

Journal ArticleDOI
17 Nov 2015
TL;DR: This work demonstrates the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform and explains the single-atom and macroscopic physics.
Abstract: We present the first circularly-polarized soft X-ray harmonics to photon energies >160eV. Bright phase matched beams are used to characterize important materials with intrinsic perpendicular magnetic anisotropy for the first time using tabletop sources.

254 citations

Journal ArticleDOI
07 Jul 2006-Science
TL;DR: X-ray measurements reveal a crystalline monolayer at the surface of the eutectic liquid Au82Si18, at temperatures above the alloy's melting point, notable, considering that AuSi does not form stable bulk crystalline phases at any concentration and temperature.
Abstract: X-ray measurements reveal a crystalline monolayer at the surface of the eutectic liquid Au82Si18, at temperatures above the alloy's melting point. Surface-induced atomic layering, the hallmark of liquid metals, is also found below the crystalline monolayer. The layering depth, however, is threefold greater than that of all liquid metals studied to date. The crystallinity of the surface monolayer is notable, considering that AuSi does not form stable bulk crystalline phases at any concentration and temperature and that no crystalline surface phase has been detected thus far in any pure liquid metal or nondilute alloy. These results are discussed in relation to recently suggested models of amorphous alloys.

174 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations