scispace - formally typeset
Search or ask a question
Author

Oleksandr Maximyuk

Other affiliations: Russian Academy
Bio: Oleksandr Maximyuk is an academic researcher from National Academy of Sciences of Ukraine. The author has contributed to research in topics: Receptor & Patch clamp. The author has an hindex of 9, co-authored 27 publications receiving 298 citations. Previous affiliations of Oleksandr Maximyuk include Russian Academy.

Papers
More filters
Journal ArticleDOI
TL;DR: It is reconfirm that hyperforin is a major neuroactive component of hypericum extracts but also demonstrate that this structurally unique and naturally abundant molecule is a potent modulation of mechanism involved in the control of neuronal ionic conductances.

57 citations

Journal ArticleDOI
TL;DR: The results indicate that surface charge of the neuronal membrane plays a crucial role in the initiation of low Mg(2+)-induced seizures and suggests that Ca(2+) and Mg (2+), through screening of surface charge, have important anti-seizure and antiepileptic properties.
Abstract: Putative mechanisms of induction and maintenance of seizure-like activity (SLA) in the low Mg2+ model of seizures are: facilitation of NMDA receptors and decreased surface charge screening near vol...

54 citations

Journal ArticleDOI
TL;DR: It is demonstrated directly that the desensitization of the receptor, after being activated by ATP, proceeds independently of the presence of agonist, causing unusual combination of temperature sensitivity/insensitivity of P2X3 receptors.
Abstract: P2X3 purinoreceptors expressed in mammalian sensory neurons are involved in nociception, mechanosensory transduction, and temperature sensation. Homomeric P2X3 receptors desensitize rapidly (<500 ms after activation by an agonist) and recover from desensitization very slowly (20–25 min at room temperature). They are susceptible to use-dependent inhibition by low nanomolar concentrations of ATP through developing the “high-affinity binding site” (HABS), which traps ATP molecules, thus keeping receptors in a desensitized state (Pratt et al., J Neurosci 25:7359–7365, 2005). Indeed, here we demonstrated directly that the desensitization of the receptor, after being activated by ATP, proceeds independently of the presence of agonist. We found that the temperature sensitivity of P2X3 receptors is abnormal: development of desensitization does not depend on temperature within the range between 25 and 40°C, whereas the recovery from desensitization is greatly \accelerated with temperature increase (Q 10 ∼10). The sensitivity of HABS to low nanomolar ATP near normal body temperature (35°C) is substantially lower than at 25°C (IC50 is 3.2 ± 0.3 nM at 35°C and 0.79 ± 0.09 nM at 25°C). HABS itself is subjected to slow desensitization partially loosing its sensitivity to ATP: at 35°C the response completely recovers in 10 min in the presence of 3 nM ATP, making the receptor operational in the presence of up to 30 nM ATP. Unusual combination of temperature sensitivity/insensitivity of P2X3 receptors may be related to their pivotal role in the processing of thermal sensitivity as revealed by recent knockout experiments.

43 citations

Journal ArticleDOI
TL;DR: It is found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region.
Abstract: The exact roles of acid-sensing ion channels (ASICs) in synaptic plasticity remain elusive. Here, we address the contribution of ASIC1a to five forms of synaptic plasticity in the mouse hippocampus using an in vitro multi-electrode array recording system. We found that genetic deletion or pharmacological blockade of ASIC1a greatly reduced, but did not fully abolish, the probability of long-term potentiation (LTP) induction by either single or repeated high frequency stimulation or theta burst stimulation in the CA1 region. However, these treatments did not affect hippocampal long-term depression induced by low frequency electrical stimulation or (RS)-3,5-dihydroxyphenylglycine. We also show that ASIC1a exerts its action in hippocampal LTP through multiple mechanisms that include but are not limited to augmentation of NMDA receptor function. Taken together, these results reveal new insights into the role of ASIC1a in hippocampal synaptic plasticity and the underlying mechanisms. This unbiased study also demonstrates a novel and objective way to assay synaptic plasticity mechanisms in the brain.

39 citations

Journal ArticleDOI
TL;DR: Novel 2-oxo-2H-chromene-3-carboxamidine derivative 5b, designed with molecular modeling approach, inhibits ASIC1a currents with an apparent IC50 of 27 nM when measured at pH 6.7, and suggests that compound 5b binds to pH sensor of ASIC 1a acting as orthosteric noncompetitive antagonist.
Abstract: Acid sensing ion channels 1a (ASIC1a) are of crucial importance in numerous physiological and pathological processes in the brain. Here we demonstrate that novel 2-oxo-2H-chromene-3-carboxamidine derivative 5b, designed with molecular modeling approach, inhibits ASIC1a currents with an apparent IC50 of 27 nM when measured at pH 6.7. Acidification to 5.0 decreases the inhibition efficacy by up to 3 orders of magnitude. The 5b molecule not only shifts pH dependence of ASIC1a activation but also inhibits its maximal evoked response. These findings suggest that compound 5b binds to pH sensor of ASIC1a acting as orthosteric noncompetitive antagonist. At 100 nM, compound 5b completely inhibits induction of long-term potentiation (LTP) in CA3-CA1 but not in MF-CA3 synapses. These findings support the knockout data indicating the crucial modulatory role of ASIC1a channels in the NMDAR-dependent LTP and introduce a novel type of ASIC1a antagonists.

32 citations


Cited by
More filters
Journal Article
TL;DR: The role of thrombin in such processes as wound healing and the evidence implicating PAR-1 in vascular disorders and cancer are described and advances in the understanding ofPAR-1-mediated intracellular signaling and receptor desensitization are identified.

922 citations

Journal ArticleDOI
TL;DR: Recent data involving purinergic signalling in pathological conditions, including pain, trauma, ischaemia, epilepsy, migraine, psychiatric disorders and drug addiction are highlighted, which are expected to lead to the development of therapeutic strategies for these disorders with novel mechanisms of action.

777 citations

Journal ArticleDOI
TL;DR: An overview of the current state of the field of interneuron research, focusing largely on the hippocampus, discusses recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations.
Abstract: In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10–15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.

545 citations

Journal ArticleDOI
TL;DR: Data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years are discussed with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Abstract: Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.

467 citations

Journal ArticleDOI
TL;DR: This review integrates new findings of possible mechanisms that may underlie the antidepressant action of St John’s wort and its active constituents with a large body of existing literature.
Abstract: competing for status as a standard antidepressant therapy. Because of this, great effort has been devoted to identifying the active antidepressant compounds in the extract. From a phytochemical point of view, St John’s wort is one of the best-investigated medicinal plants. A series of bioactive compounds has been detected in the crude material, namely flavonol derivatives, biflavones, proanthocyanidines, xanthones, phloroglucinols and naphthodianthrones. Although St John’s wort has been subjected to extensive scientific studies in the last decade, there are still many open questions about its pharmacology and mechanism of action. Initial biochemical studies reported that St John’s wort is only a weak inhibitor of monoamine oxidase-A and -B activity but that it inhibits the synaptosomal uptake of serotonin, dopamine and noradrenaline (norepinephrine) with approximately equal affinity. However, other in vitro binding assays carried out using St John’s wort extract demonstrated significant affinity for adenosine, GABAA, GABAB and glutamate receptors. In vivo St John’s wort extract leads to a downregulation of β-adrenergic receptors and an upregulation of serotonin 5-HT2 receptors in the rat frontal cortex and causes changes in neurotransmitter concentrations in brain areas that are implicated in depression. In studies using the rat forced swimming test, an animal model of depression, St John’s wort extracts induced a significant reduction of immobility. In other experimental models of depression, including acute and chronic forms of escape deficit induced by stressors, St John’s wort extract was shown to protect rats from the consequences of unavoidable stress. Recent neuroendocrine studies suggest that St John’s wort is involved in the regulation of genes that control hypothalamic-pituitary-adrenal axis function. With regard to the antidepressant effects of St John’s wort extract, many of the pharmacological activities appear to be attributable to the naphthodianthrone hypericin, the phloroglucinol derivative hyperforin and several flavonoids.

339 citations