scispace - formally typeset
Search or ask a question
Author

Oleksi Petrenko

Bio: Oleksi Petrenko is an academic researcher from Stony Brook University. The author has contributed to research in topics: Carcinogenesis & Macrophage migration inhibitory factor. The author has an hindex of 22, co-authored 34 publications receiving 4105 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Evidence that p53 translocation to the mitochondria occurs in vivo in irradiated thymocytes is provided and it is shown that the p53 protein can directly induce permeabilization of the outer mitochondrial membrane by forming complexes with the protective BclXL and Bcl2 proteins, resulting in cytochrome c release.

1,751 citations

Journal Article
TL;DR: Because the p53-MDM2 interaction is structurally and biologically well understood, the design of small lipophilic molecules that disrupt or prevent it has become an important target for cancer therapy.
Abstract: Activation of the p53 protein protects the organism against the propagation of cells that carry damaged DNA with potentially oncogenic mutations. MDM2, a p53-specific E3 ubiquitin ligase, is the principal cellular antagonist of p53, acting to limit the p53 growth-suppressive function in unstressed cells. In unstressed cells, MDM2 constantly monoubiquitinates p53 and thus is the critical step in mediating its degradation by nuclear and cytoplasmic proteasomes. The interaction between p53 and MDM2 is conformation-based and is tightly regulated on multiple levels. Disruption of the p53-MDM2 complex by multiple routes is the pivotal event for p53 activation, leading to p53 induction and its biological response. Because the p53-MDM2 interaction is structurally and biologically well understood, the design of small lipophilic molecules that disrupt or prevent it has become an important target for cancer therapy.

841 citations

Journal ArticleDOI
TL;DR: The results suggest that in sensitive organs mitochondrial p53 accumulation in vivo occurs soon after a death stimulus, triggering a rapid first wave of apoptosis that is transcription independent and may precede a second slower wave that are transcription dependent.
Abstract: p53 promotes apoptosis in response to death stimuli by transactivation of target genes and by transcription-independent mechanisms. We recently showed that wild-type p53 rapidly translocates to mitochondria in response to multiple death stimuli in cultured cells. Mitochondrial p53 physically interacts with antiapoptotic Bcl proteins, induces Bak oligomerization, permeabilizes mitochondrial membranes, and rapidly induces cytochrome c release. Here we characterize the mitochondrial p53 response in vivo. Mice were subjected to γ irradiation or intravenous etoposide administration, followed by cell fractionation and immunofluorescence studies of various organs. Mitochondrial p53 accumulation occurred in radiosensitive organs like thymus, spleen, testis, and brain but not in liver and kidney. Of note, mitochondrial p53 translocation was rapid (detectable at 30 min in thymus and spleen) and triggered an early wave of marked caspase 3 activation and apoptosis. This caspase 3-mediated apoptosis was entirely p53 dependent, as shown by p53 null mice, and preceded p53 target gene activation. The transcriptional p53 program had a longer lag phase than the rapid mitochondrial p53 program. In thymus, the earliest apoptotic target gene products PUMA, Noxa, and Bax appeared at 2, 4, and 8 h, respectively, while Bid, Killer/DR5, and p53DinP1 remained uninduced even after 20 h. Target gene induction then led to further increase in active caspase 3. Similar biphasic kinetics was seen in cultured human cells. Our results suggest that in sensitive organs mitochondrial p53 accumulation in vivo occurs soon after a death stimulus, triggering a rapid first wave of apoptosis that is transcription independent and may precede a second slower wave that is transcription dependent.

367 citations

Journal ArticleDOI
TL;DR: The data provide direct genetic evidence for a functional link between MIF and the p53 tumor suppressor and indicate an important and previously unappreciated role for MIF in carcinogenesis.
Abstract: Macrophage migration inhibitory factor (MIF) is a mediator of host immunity and functions as a high, upstream activator of cells within the innate and the adaptive immunological systems. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. To better understand MIF's activity in growth control, we generated and characterized a strain of MIF-knockout (MIF-KO) mice in the inbred, C57BL/6 background. Embryonic fibroblasts from MIF-KO mice exhibit p53-dependent growth alterations, increased p53 transcriptional activity, and resistance to ras-mediated transformation. Concurrent deletion of the p53 gene in vivo reversed the observed phenotype of cells deficient in MIF. In vivo studies showed that fibrosarcomas induced by the carcinogen benzo[alpha]pyrene are smaller in size and have a lower mitotic index in MIF-KO mice relative to their WT counterparts. The data provide direct genetic evidence for a functional link between MIF and the p53 tumor suppressor and indicate an important and previously unappreciated role for MIF in carcinogenesis.

269 citations

Journal ArticleDOI
TL;DR: It is reported here that ΔNp73 confers resistance to spontaneous replicative senescence of primary mouse embryo fibroblasts (MEFs) and immortalizes MEFs at a 1,000-fold-higher frequency than occurs spontaneously and behaves as an oncogene that targets p53 that might explain why ΔN p73 upregulation may be selected for during tumorigenesis of human cancers.
Abstract: TP73, despite significant homology to TP53, is not a classic tumor suppressor gene, since it exhibits upregulation of nonmutated products in human tumors and lacks a tumor phenotype in p73-deficient mice. We recently reported that an N-terminally truncated isoform, ΔNp73, is upregulated in breast and gynecological cancers. We further showed that ΔNp73 is a potent transdominant inhibitor of wild-type p53 and TAp73 in cultured human tumor cells by efficiently counteracting their target gene transactivations, apoptosis, and growth suppression functions (A. I. Zaika et al., J. Exp. Med. 6:765-780, 2002). Although these data strongly suggest oncogenic properties of ΔNp73, this can only be directly shown in primary cells. We report here that ΔNp73 confers resistance to spontaneous replicative senescence of primary mouse embryo fibroblasts (MEFs) and immortalizes MEFs at a 1,000-fold-higher frequency than occurs spontaneously. ΔNp73 cooperates with cMyc and E1A in promoting primary cell proliferation and colony formation and compromises p53-dependent MEF apoptosis. Importantly, ΔNp73 rescues Ras-induced senescence. Moreover, ΔNp73 cooperates with oncogenic Ras in transforming primary fibroblasts in vitro and in inducing MEF-derived fibrosarcomas in vivo in nude mice. Wild-type p53 is likely a major target of ΔNp73 inhibition in primary fibroblasts since deletion of p53 or its requisite upstream activator ARF abrogates the growth-promoting effect of ΔNp73. Taken together, ΔNp73 behaves as an oncogene that targets p53 that might explain why ΔNp73 upregulation may be selected for during tumorigenesis of human cancers.

114 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: The identification of critical control points in the cell death pathway has yielded fundamental insights for basic biology, as well as provided rational targets for new therapeutics.

4,741 citations

Journal ArticleDOI
TL;DR: Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria, meaning that mitochondria coordinate the late stage of cellular demise.
Abstract: Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.

3,340 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
30 Jul 2004-Science
TL;DR: The therapeutic induction of MOMP may restore apoptosis in cancer cells in which it is disabled, and the general rules governing the pathophysiology and controversial issues regarding its regulation are discussed.
Abstract: In the mitochondrial pathway of apoptosis, caspase activation is closely linked to mitochondrial outer membrane permeabilization (MOMP). Numerous pro-apoptotic signal-transducing molecules and pathological stimuli converge on mitochondria to induce MOMP. The local regulation and execution of MOMP involve proteins from the Bcl-2 family, mitochondrial lipids, proteins that regulate bioenergetic metabolite flux, and putative components of the permeability transition pore. MOMP is lethal because it results in the release of caspase-activating molecules and caspase-independent death effectors, metabolic failure in the mitochondria, or both. Drugs designed to suppress excessive MOMP may avoid pathological cell death, and the therapeutic induction of MOMP may restore apoptosis in cancer cells in which it is disabled. The general rules governing the pathophysiology of MOMP and controversial issues regarding its regulation are discussed.

3,258 citations

Journal ArticleDOI
TL;DR: This work surmises that CRI represents the seventh hallmark of cancer, and suggests that an additional mechanism involved in cancer-related inflammation (CRI) is induction of genetic instability by inflammatory mediators, leading to accumulation of random genetic alterations in cancer cells.
Abstract: Inflammatory conditions in selected organs increase the risk of cancer. An inflammatory component is present also in the microenvironment of tumors that are not epidemiologically related to inflammation. Recent studies have begun to unravel molecular pathways linking inflammation and cancer. In the tumor microenvironment, smoldering inflammation contributes to proliferation and survival of malignant cells, angiogenesis, metastasis, subversion of adaptive immunity, reduced response to hormones and chemotherapeutic agents. Recent data suggest that an additional mechanism involved in cancer-related inflammation (CRI) is induction of genetic instability by inflammatory mediators, leading to accumulation of random genetic alterations in cancer cells. In a seminal contribution, Hanahan and Weinberg [(2000) Cell, 100, 57-70] identified the six hallmarks of cancer. We surmise that CRI represents the seventh hallmark.

2,475 citations