scispace - formally typeset
Search or ask a question
Author

Olexandr Isayev

Bio: Olexandr Isayev is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Medicine & Artificial neural network. The author has an hindex of 29, co-authored 83 publications receiving 6064 citations. Previous affiliations of Olexandr Isayev include United States Department of the Army & University of North Carolina at Chapel Hill.


Papers
More filters
Journal ArticleDOI
26 Jul 2018-Nature
TL;DR: A future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence is envisaged.
Abstract: Here we summarize recent progress in machine learning for the chemical sciences. We outline machine-learning techniques that are suitable for addressing research questions in this domain, as well as future directions for the field. We envisage a future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence.

2,295 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate how a deep neural network trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecules, which is called ANI-ME (Accurate NeurAl networK engINE for Molecular Energies).
Abstract: Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech recognition In this paper, we demonstrate how a deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecules We introduce ANAKIN-ME (Accurate NeurAl networK engINe for Molecular Energies) or ANI for short ANI is a new method designed with the intent of developing transferable neural network potentials that utilize a highly-modified version of the Behler and Parrinello symmetry functions to build single-atom atomic environment vectors (AEV) as a molecular representation AEVs provide the ability to train neural networks to data that spans both configurational and conformational space, a feat not previously accomplished on this scale We utilized ANI to build a potential called ANI-1, which was trained on a subset of the GDB databases with up to 8 heavy atoms in order to predict total energies for organic molecules containing four atom types: H, C, N, and O To obtain an accelerated but physically relevant sampling of molecular potential surfaces, we also proposed a Normal Mode Sampling (NMS) method for generating molecular conformations Through a series of case studies, we show that ANI-1 is chemically accurate compared to reference DFT calculations on much larger molecular systems (up to 54 atoms) than those included in the training data set

1,132 citations

Journal ArticleDOI
TL;DR: The ReLeaSE method is used to design chemical libraries with a bias toward structural complexity or toward compounds with maximal, minimal, or specific range of physical properties, such as melting point or hydrophobicity.
Abstract: We have devised and implemented a novel computational strategy for de novo design of molecules with desired properties termed ReLeaSE (Reinforcement Learning for Structural Evolution). On the basis of deep and reinforcement learning (RL) approaches, ReLeaSE integrates two deep neural networks—generative and predictive—that are trained separately but are used jointly to generate novel targeted chemical libraries. ReLeaSE uses simple representation of molecules by their simplified molecular-input line-entry system (SMILES) strings only. Generative models are trained with a stack-augmented memory network to produce chemically feasible SMILES strings, and predictive models are derived to forecast the desired properties of the de novo–generated compounds. In the first phase of the method, generative and predictive models are trained separately with a supervised learning algorithm. In the second phase, both models are trained jointly with the RL approach to bias the generation of new chemical structures toward those with the desired physical and/or biological properties. In the proof-of-concept study, we have used the ReLeaSE method to design chemical libraries with a bias toward structural complexity or toward compounds with maximal, minimal, or specific range of physical properties, such as melting point or hydrophobicity, or toward compounds with inhibitory activity against Janus protein kinase 2. The approach proposed herein can find a general use for generating targeted chemical libraries of novel compounds optimized for either a single desired property or multiple properties.

792 citations

Journal ArticleDOI
TL;DR: Data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities.
Abstract: Machine learning methods can be useful for materials discovery; however certain properties remain difficult to predict. Here, the authors present a universal machine learning approach for modelling the properties of inorganic crystals, which is validated for eight electro…

476 citations

Journal ArticleDOI
TL;DR: A general-purpose neural network potential is trained that approaches CCSD(T)/CBS accuracy on benchmarks for reaction thermochemistry, isomerization, and drug-like molecular torsions.
Abstract: Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist’s toolset. The use of computer simulations requires a balance between cost and accuracy: quantum-mechanical methods provide high accuracy but are computationally expensive and scale poorly to large systems, while classical force fields are cheap and scalable, but lack transferability to new systems. Machine learning can be used to achieve the best of both approaches. Here we train a general-purpose neural network potential (ANI-1ccx) that approaches CCSD(T)/CBS accuracy on benchmarks for reaction thermochemistry, isomerization, and drug-like molecular torsions. This is achieved by training a network to DFT data then using transfer learning techniques to retrain on a dataset of gold standard QM calculations (CCSD(T)/CBS) that optimally spans chemical space. The resulting potential is broadly applicable to materials science, biology, and chemistry, and billions of times faster than CCSD(T)/CBS calculations. Computational modelling of chemical systems requires a balance between accuracy and computational cost. Here the authors use transfer learning to develop a general purpose neural network potential that approaches quantum-chemical accuracy for reaction thermochemistry, isomerization, and drug-like molecular torsions.

400 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided in this paper, covering approximately the last seven years, including developments in density functional theory and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces.
Abstract: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Moller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr_2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

2,396 citations

Journal ArticleDOI
26 Jul 2018-Nature
TL;DR: A future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence is envisaged.
Abstract: Here we summarize recent progress in machine learning for the chemical sciences. We outline machine-learning techniques that are suitable for addressing research questions in this domain, as well as future directions for the field. We envisage a future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence.

2,295 citations

01 Jan 2015
TL;DR: Detailed benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset methods for intermolecular interactions, and tests of the accuracy of implicit solvation models are provided.
Abstract: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

1,919 citations

Journal ArticleDOI
TL;DR: This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences, including conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields.
Abstract: Machine learning (ML) encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences. This includes conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields. After giving a basic notion of machine learning methods and principles, examples are described of how statistical physics is used to understand methods in ML. This review then describes applications of ML methods in particle physics and cosmology, quantum many-body physics, quantum computing, and chemical and material physics. Research and development into novel computing architectures aimed at accelerating ML are also highlighted. Each of the sections describe recent successes as well as domain-specific methodology and challenges.

1,504 citations