scispace - formally typeset
Search or ask a question
Author

Olga Dulub

Bio: Olga Dulub is an academic researcher from Tulane University. The author has contributed to research in topics: Scanning tunneling microscope & Anatase. The author has an hindex of 18, co-authored 22 publications receiving 3321 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that the resulting overall decrease of the surface Zn concentration stabilizes this polar surface, and triangularly shaped reconstructions over a wide range of oxygen and hydrogen chemical potentials appear to be electrostatically driven.
Abstract: The ($1\ifmmode\times\else\texttimes\fi{}1$) terminated (0001)-Zn surface of wurtzite ZnO was investigated with scanning tunneling microscopy. The surface is characterized by the presence of nanosized islands with a size-dependent shape and triangular holes with single-height, O-terminated step edges. It is proposed that the resulting overall decrease of the surface Zn concentration stabilizes this polar surface. Ab initio calculations of test geometries predict triangularly shaped reconstructions over a wide range of oxygen and hydrogen chemical potentials. The formation of these reconstructions appears to be electrostatically driven.

479 citations

Journal ArticleDOI
TL;DR: In this article, structural models for the different surfaces of ZnO surfaces are proposed and related to the stability and reactivity of the surfaces, based on these results, structural models are proposed.

367 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present atomically resolved scanning tunneling microscopy measurements of the cluster surfaces and an atomic model of the strong metal support interaction (SMSI) state, characterized by complete encapsulation of the clusters with a reduced titanium oxide layer.
Abstract: Nanosized platinum clusters were grown on a TiO2(110) surface and annealed in ultrahigh vacuum at high temperatures. This leads to the so-called strong metal-support interaction (SMSI) state, characterized by a complete encapsulation of the clusters with a reduced titanium oxide layer. We present atomically resolved scanning tunneling microscopy measurements of the cluster surfaces and an atomic model of the SMSI state. The ability to resolve the cluster surface geometry with atomistic detail may help to identify the active sites responsible for the SMSI.

338 citations

Journal ArticleDOI
TL;DR: In this article, density functional calculations for the (0001)-Zn surface of wurtzite ZnO are reported, and different stabilization mechanisms, such as metallization of the surface layer, adsorption of OH groups or O adatoms, the formation of Zn vacancies, and large scale triangular reconstructions are considered.
Abstract: Density-functional calculations for the (0001)-Zn surface of wurtzite ZnO are reported. Different stabilization mechanisms, such as metallization of the surface layer, adsorption of OH groups or O adatoms, the formation of Zn vacancies, and large scale triangular reconstructions are considered. The calculations indicate that isolated Zn vacancies or O adatoms are unfavorable compared to triangular reconstructions. In the absence of hydrogen, these triangular features are stable under any realistic temperature and pressure. When hydrogen is present, the reconstruction is lifted, and hydroxyl groups stabilize the ideal otherwise unreconstructed surface. The transition between the unreconstructed hydroxyl covered surface and the triangular shaped features occurs abruptly; OH groups lift the reconstruction, but their adsorption is energetically unfavorable on the triangularly reconstructed surface.

323 citations

Journal ArticleDOI
TL;DR: The present combined experimental and theoretical study gives atomic-scale insights into the adsorption of water on anatase (101), the most frequently exposed surface of this TiO(2) polymorph.
Abstract: The interaction of water with metal oxides is important for catalysis and biochemistry. Charge rearrangement at the water–anastase (101) interface affects the adsorption of further water molecules, and results in short-range repulsive interactions and locally ordered water-molecule superstructures. The interaction of water with metal oxide surfaces is of fundamental importance to various fields of science, ranging from geophysics to catalysis and biochemistry1,2,3,4. In particular, the discovery that TiO2 photocatalyses the dissociation of water5 has triggered broad interest and intensive studies of water adsorption on TiO2 over decades6. So far, these studies have mostly focused on the (110) surface of the most stable polymorph of TiO2, rutile, whereas it is the metastable anatase form that is generally considered photocatalytically more efficient. The present combined experimental (scanning tunnelling microscopy) and theoretical (density functional theory and first-principles molecular dynamics) study gives atomic-scale insights into the adsorption of water on anatase (101), the most frequently exposed surface of this TiO2 polymorph. Water adsorbs as an intact monomer with a computed binding energy of 730 meV. The charge rearrangement at the molecule–anatase interface affects the adsorption of further water molecules, resulting in short-range repulsive and attractive interactions along the [010] and directions, respectively, and a locally ordered (2×2) superstructure of molecular water.

295 citations


Cited by
More filters
Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase transition of Na6(CO3)(SO4)2, Na2SO4, and Na2CO3 of the Na2O/Na2O 2 mixture at the stationary phase and shows clear patterns in the response of these two materials to each other.
Abstract: Jenny Schneider,*,† Masaya Matsuoka,‡ Masato Takeuchi,‡ Jinlong Zhang, Yu Horiuchi,‡ Masakazu Anpo,‡ and Detlef W. Bahnemann*,† †Institut fur Technische Chemie, Leibniz Universitaẗ Hannover, Callinstrasse 3, D-30167 Hannover, Germany ‡Faculty of Engineering, Osaka Prefecture University, 1 Gakuen-cho, Sakai Osaka 599-8531, Japan Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China

4,353 citations

Journal ArticleDOI
TL;DR: In this paper, a review of various nanostructures of ZnO grown by the solid-vapour phase technique and their corresponding growth mechanisms is presented. And the application of nanobelts as nanosensors, nanocantilevers, field effect transistors and nanoresonators is demonstrated.
Abstract: Zinc oxide is a unique material that exhibits semiconducting and piezoelectric dual properties. Using a solid–vapour phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobelts, nanowires and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of nanostructures among all materials, both in structures and in properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers and biomedical sciences. This article reviews the various nanostructures of ZnO grown by the solid–vapour phase technique and their corresponding growth mechanisms. The application of ZnO nanobelts as nanosensors, nanocantilevers, field effect transistors and nanoresonators is demonstrated.

3,361 citations

Journal ArticleDOI
TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Abstract: Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal–support interaction, and metal–reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results o...

2,700 citations

Journal ArticleDOI
TL;DR: The implementation of various DFT functionals and many‐body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures are discussed.
Abstract: During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science—promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for future technologies. This development is based on two important columns: (i) The improved description of electronic many-body effects within density-functional theory (DFT) and the upcoming post-DFT methods. (ii) The implementation of the new functionals and many-body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures. In this review, I discuss the implementation of various DFT functionals [local-density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functional mixing DFT, and exact (Hartree-Fock) exchange] and post-DFT approaches [DFT + U for strong electronic correlations in narrow bands, many-body perturbation theory (GW) for quasiparticle spectra, dynamical correlation effects via the adiabatic-connection fluctuation-dissipation theorem (AC-FDT)] in the Vienna ab initio simulation package VASP. VASP is a plane-wave all-electron code using the projector-augmented wave method to describe the electron-core interaction. The code uses fast iterative techniques for the diagonalization of the DFT Hamiltonian and allows to perform total-energy calculations and structural optimizations for systems with thousands of atoms and ab initio molecular dynamics simulations for ensembles with a few hundred atoms extending over several tens of ps. Applications in many different areas (structure and phase stability, mechanical and dynamical properties, liquids, glasses and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces, interfaces and thin films, chemical reactions, and catalysis) are reviewed. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008

2,364 citations