scispace - formally typeset
Search or ask a question
Author

Olga E. Titova

Bio: Olga E. Titova is an academic researcher from Uppsala University. The author has contributed to research in topics: Medicine & Hazard ratio. The author has an hindex of 10, co-authored 24 publications receiving 531 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Global and regional meta-analyses suggest that excessive restrained eating as found in those with anorexia nervosa coincides with structural brain changes analogous to clinical symptoms.
Abstract: Structural imaging studies demonstrate brain tissue abnormalities in eating disorders, yet a quantitative analysis has not been done. In global and regional meta-analyses of 9 voxel-based morphometry (VBM) studies, with a total of 228 eating disorder participants (currently ill with anorexia nervosa), and 240 age-matched healthy controls, we compare brain volumes using global and regional analyses. Anorexia nervosa (AN) patients have global reductions in gray (effect size = −0.66) and white matter (effect size = −0.74) and increased cerebrospinal fluid (effect size = 0.98) and have regional decreases in left hypothalamus, left inferior parietal lobe, right lentiform nucleus and right caudate, and no significant increases. No significant difference in hemispheric lateralization was found. Global and regional meta-analyses suggest that excessive restrained eating as found in those with anorexia nervosa coincides with structural brain changes analogous to clinical symptoms.

174 citations

Journal ArticleDOI
TL;DR: Keeping to a low meat intake could prove to be an impact-driven public health policy to support healthy cognitive aging, when confirmed by longitudinal studies, and the MeDi score is a construct that may mask possible associations of single MeDi features with brain health domains in elderly populations.

108 citations

Journal ArticleDOI
01 Aug 2013-Age
TL;DR: It is found that the self-reported 7-day dietary intake of EPA and DHA at the age of 70 years was positively associated with global gray matter volume and increased global cognitive performance score, but no significant associations were observed.
Abstract: In the present study, we tested whether elderly with a high dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) would have higher cognitive test scores and greater brain volume than those with low dietary intake of these fatty acids. Data were obtained from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort. The dietary intake of EPA and DHA was determined by a 7-day food protocol in 252 cognitively healthy elderly (122 females) at the age of 70 years. At age 75, participants' global cognitive function was examined, and their brain volumes were measured by magnetic resonance imaging (MRI). Three different multivariate linear regression models were applied to test our hypothesis: model A (adjusted for gender and age), model B (additionally controlled for lifestyle factors, e.g., education), and model C (further controlled for cardiometabolic factors, e.g., systolic blood pressure). We found that the self-reported 7-day dietary intake of EPA and DHA at the age of 70 years was positively associated with global gray matter volume (P < 0.05, except for model C) and increased global cognitive performance score (P < 0.05). However, no significant associations were observed between the dietary intake of EPA and DHA and global white matter, total brain volume, and regional gray matter, respectively. Further, no effects were observed when examining cognitively impaired (n = 27) elderly as separate analyses. These cross-sectional findings suggest that dietary intake of EPA and DHA may be linked to improved cognitive health in late life but must be confirmed in patient studies.

92 citations

Journal ArticleDOI
TL;DR: It is indicated that reports of sleep disturbance and short sleep duration are linked to academic failure in adolescents.

53 citations

Journal ArticleDOI
TL;DR: The results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing.
Abstract: Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low- or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing.

40 citations


Cited by
More filters
01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

21 Jun 2010

1,966 citations

Journal ArticleDOI
TL;DR: This cornucopia will be coveted and dipped into by those neurologists with a special interest in abnormal movement disorders, but who would not consider themselves to have a research interest in tremor.
Abstract: on to develop full blown Parkinson's disease with rigidity and bradykinesia in the next few years. For those interested in the mechanisms of tremor, there are the customary authoritative reviews by Llinas, De Long, Lamarre, Rothwell and Deuschl, but uncertainty remains with respect to the relative importance of central autonomous generators and instability of peripheral reflex loops. Well written chapters are also included on primary orthostatic tremor and its relationship to essential tremor, writing tremor, neuropathic tremor, midbrain tremor and the increasingly acknowledged psychogenic tremors. Complex interrelationship between dystonia and postural tremor is also covered in depth. This cornucopia will be coveted and dipped into by those neurologists with a special interest in abnormal movement disorders, but who would not consider themselves to have a research interest in tremor. However, for the majority of clinicians involved in the hurly burly of clinical practice, I suspect that regrettably time and cost factors will conspire together to keep this excellent book out of reach. ANDREW LEES

1,150 citations

Journal ArticleDOI
TL;DR: This review summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health.
Abstract: Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.

611 citations

Journal ArticleDOI
TL;DR: Roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness are examined; how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies is discussed.
Abstract: The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut–brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.

607 citations