scispace - formally typeset
Search or ask a question
Author

Olga Shenderova

Other affiliations: North Carolina State University
Bio: Olga Shenderova is an academic researcher from Research Triangle Park. The author has contributed to research in topics: Nanodiamond & Diamond. The author has an hindex of 44, co-authored 232 publications receiving 12370 citations. Previous affiliations of Olga Shenderova include North Carolina State University.


Papers
More filters
Journal ArticleDOI
TL;DR: Brenner as mentioned in this paper presented a second generation potential energy function for solid carbon and hydrocarbon molecules that is based on an empirical bond order formalism, allowing for covalent bond breaking and forming with associated changes in atomic hybridization within a classical potential, producing a powerful method for modelling complex chemistry in large many-atom systems.
Abstract: A second-generation potential energy function for solid carbon and hydrocarbon molecules that is based on an empirical bond order formalism is presented. This potential allows for covalent bond breaking and forming with associated changes in atomic hybridization within a classical potential, producing a powerful method for modelling complex chemistry in large many-atom systems. This revised potential contains improved analytic functions and an extended database relative to an earlier version (Brenner D W 1990 Phys. Rev. B 42 9458). These lead to a significantly better description of bond energies, lengths, and force constants for hydrocarbon molecules, as well as elastic properties, interstitial defect energies, and surface energies for diamond.

3,359 citations

Journal ArticleDOI
TL;DR: The rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups are discussed.
Abstract: Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.

2,351 citations

Journal ArticleDOI
TL;DR: This review critically examines the use of NDs for biomedical applications based on type (i.e., high-pressure high-temperature [HPHT], CVD diamond, detonation ND [DND]), post-synthesis processing and modifications, and resultant properties including bio-interfacing.
Abstract: Nanodiamonds (NDs) are members of the diverse structural family of nanocarbons that includes many varieties based on synthesis conditions, post-synthesis processes, and modifications. First studied in detail beginning in the 1960s in Russia, NDs have now gained world-wide attention due to their inexpensive large-scale synthesis based on the detonation of carbon-containing explosives, small primary particle size (∼ 4 to 5 nm) with narrow size distribution, facile surface functionalization including bio-conjugation, as well as high biocompatibility. It is anticipated that the attractive properties of NDs will be exploited for the development of therapeutic agents for diagnostic probes, delivery vehicles, gene therapy, anti-viral and anti-bacterial treatments, tissue scaffolds, and novel medical devices such as nanorobots. Additionally, biotechnology applications have shown the prospective use of NDs for bioanalytical purposes, such as protein purification or fluorescent biolabeling. This review critically e...

715 citations

Journal ArticleDOI
TL;DR: A series of molecular-dynamics simulations using a many-body interatomic potential has been performed to investigate the behavior under load of several symmetrical tilt grain boundaries in diamond.
Abstract: A series of molecular-dynamics simulations using a many-body interatomic potential has been performed to investigate the behavior under load of several ^001& and ^011& symmetrical tilt grain boundaries ~GB’s! in diamond. Cohesive energies, the work for fracture, maximum stresses and strains, and toughness as a function of GB type are evaluated. Results indicate that special short-period GB’s possess higher strengths and greater resistance to crack propagation than GB’s in nearby misorientation angles. Based on dynamic simulations, it was found that the mechanism of interface failure for GB’s without preexisting flaws is not that implied by Orovan’s criterion, but rather GB strength is defined by GB type instead of cleavage energy. In simulations of crack propagation within GB’s on the other hand, it was found that critical stresses for crack propagation from atomistic simulation and from the Griffith criterion are consistent, indicating that GB cleavage energy is an important characteristic of GB toughness. Crack propagation in polycrystalline diamond samples under an applied load was also simulated and found to be predominantly transgranular rather than intergranular.

371 citations

Book
10 Aug 2006
TL;DR: The Ultra-nanocrystalline diamond: Syntheses, properties and applications as mentioned in this paper is a reference handbook that brings together the basic science of nanoscale carbon structures, particularly its diamond phase, with detailed information on nanodiamond synthesis, properties, and applications.
Abstract: "Ultrananocrystalline Diamond: Syntheses, Properties, and Applications" is a unique practical reference handbook that brings together the basic science of nanoscale carbon structures, particularly its diamond phase, with detailed information on nanodiamond synthesis, properties, and applications. Here you will learn about UNCD in its two forms, as a dispersed powder made by detonation techniques and as a chemical vapor deposited film. You will also learn about the superior mechanical, tribological, transport, electrochemical, and electron emission properties of UNCD for a wide range of applications including MEMS, NEMS, surface acoustic wave (SAW) devices, electrochemical sensors, coatings for field emission arrays, photonic and RF switching, biosensors, and neural prostheses, and more.This everything about "Ultra-nanocrystalline Diamond" book with 16 chapters is written by leading experts worldwide. It is for everyone who researches carbon nanostructures, everyone who produces them, everyone who characterizes them, and everyone who builds devices using them.

263 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a potential function is presented that can be used to model both chemical reactions and intermolecular interactions in condensed-phase hydrocarbon systems such as liquids, graphite, and polymers.
Abstract: A potential function is presented that can be used to model both chemical reactions and intermolecular interactions in condensed-phase hydrocarbon systems such as liquids, graphite, and polymers. This potential is derived from a well-known dissociable hydrocarbon force field, the reactive empirical bond-order potential. The extensions include an adaptive treatment of the nonbonded and dihedral-angle interactions, which still allows for covalent bonding interactions. Torsional potentials are introduced via a novel interaction potential that does not require a fixed hybridization state. The resulting model is intended as a first step towards a transferable, empirical potential capable of simulating chemical reactions in a variety of environments. The current implementation has been validated against structural and energetic properties of both gaseous and liquid hydrocarbons, and is expected to prove useful in simulations of hydrocarbon liquids, thin films, and other saturated hydrocarbon systems.

3,626 citations

Journal ArticleDOI
TL;DR: Brenner as mentioned in this paper presented a second generation potential energy function for solid carbon and hydrocarbon molecules that is based on an empirical bond order formalism, allowing for covalent bond breaking and forming with associated changes in atomic hybridization within a classical potential, producing a powerful method for modelling complex chemistry in large many-atom systems.
Abstract: A second-generation potential energy function for solid carbon and hydrocarbon molecules that is based on an empirical bond order formalism is presented. This potential allows for covalent bond breaking and forming with associated changes in atomic hybridization within a classical potential, producing a powerful method for modelling complex chemistry in large many-atom systems. This revised potential contains improved analytic functions and an extended database relative to an earlier version (Brenner D W 1990 Phys. Rev. B 42 9458). These lead to a significantly better description of bond energies, lengths, and force constants for hydrocarbon molecules, as well as elastic properties, interstitial defect energies, and surface energies for diamond.

3,359 citations

Journal ArticleDOI
TL;DR: In this paper, the structure, preparation and properties of polymer/graphene nanocomposites are discussed in general along with detailed examples drawn from the scientific literature, and the percolation threshold can be achieved at a very lower filler loading.

2,999 citations

Journal ArticleDOI
TL;DR: This work demonstrates microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume higher than conventional supercapacitor.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices¹. By offering fast charging and discharging rates, and the ability to sustain millions of ²⁻⁵, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s⁻¹, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several micrometre-thick layer of nanostructured carbon onions⁶‚⁷ with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.

2,469 citations

Journal ArticleDOI
TL;DR: The rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups are discussed.
Abstract: Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.

2,351 citations