scispace - formally typeset
Search or ask a question
Author

Oliver Ambacher

Other affiliations: Osram, Siemens, Cornell University  ...read more
Bio: Oliver Ambacher is an academic researcher from Fraunhofer Society. The author has contributed to research in topics: Amplifier & High-electron-mobility transistor. The author has an hindex of 64, co-authored 848 publications receiving 26256 citations. Previous affiliations of Oliver Ambacher include Osram & Siemens.


Papers
More filters
Journal ArticleDOI
TL;DR: The development of submillimeter-wave monolithic integrated circuits (S-MMICs) and modules for use in next-generation sensors and high-data-rate wireless communication systems, operating in the 300-500-GHz frequency regime is presented.
Abstract: In this paper, we present the development of submillimeter-wave monolithic integrated circuits (S-MMICs) and modules for use in next-generation sensors and high-data-rate wireless communication systems, operating in the 300-500-GHz frequency regime. A four-stage 460-GHz amplifier MMIC and a 440-GHz class-B frequency doubler circuit have been successfully realized using our 35-nm InAlAs/InGaAs-based metamorphic high-electron mobility transistor (mHEMT) technology in combination with grounded coplanar circuit topology (GCPW). Additionally, a 500-GHz amplifier MMIC was fabricated using a more advanced 20-nm mHEMT technology. To package the submillimeter-wave circuits, a set of waveguide-to-microstrip transitions has been fabricated on both 50-μm-thick quartz and GaAs substrates, covering the frequency range between 220 and 500 GHz. The E-plane probes were integrated in a four-stage 20-nm cascode amplifier circuit to realize a full H -band (220 to 325 GHz) S-MMIC amplifier module with monolithically integrated waveguide transitions.

55 citations

Journal ArticleDOI
TL;DR: In this paper, single crystalline tungsten nanowires were prepared from directionally solidified NiAl-W alloys by a chemical release from the resulting binary phase material.
Abstract: Single crystalline tungsten nanowires were prepared from directionally solidified NiAl-W alloys by a chemical release from the resulting binary phase material. Electron back scatter diffraction (EBSD) proves that they are single crystals having identical crystallographic orientation. Mechanical investigations such as bending tests, lateral force measurements, and mechanical resonance measurements were performed on 100-300 nm diameter wires. The wires could be either directly employed using micro tweezers, as a singly clamped nanowire or in a doubly clamped nanobridge. The mechanical tests exhibit a surprisingly high flexibility for such a brittle material resulting from the small dimensions. Force displacement measurements on singly clamped W nanowires by an AFM measurement allowed the determination of a Young's modulus of 332 GPa very close to the bulk value of 355 GPa. Doubly clamped W nanowires were employed as resonant oscillating nanowires in a magnetomotively driven resonator running at 117 kHz. The Young's modulus determined from this setup was found to be higher 450 GPa which is likely to be an artefact resulting from the shift of the resonance frequency by an additional mass loading.

55 citations

Journal ArticleDOI
TL;DR: In this paper, a model for the influence of different contributions to the high electron concentration in dependence on the film thickness of state-of-the-art InN layers grown by molecular-beam epitaxy is proposed.
Abstract: A model for the influence of different contributions to the high electron concentration in dependence on the film thickness of state-of-the-art InN layers grown by molecular-beam epitaxy is proposed. Surface accumulation has a crucial influence for InN layers 10μm.

53 citations

Journal ArticleDOI
TL;DR: In this article, the NO x and O 2 sensing properties of highly textured indium oxide in 2 O 3 thin films grown by metal organic chemical vapor deposition (MOCVD) technique have been investigated as a function of the operation temperature and partial pressure.
Abstract: The NO x and O 2 sensing properties of highly textured indium oxide In 2 O 3 thin films grown by metal organic chemical vapor deposition (MOCVD) technique have been investigated as a function of the operation temperature and partial pressure The sensor is very sensitive to NO x and its response is strongly dependent on the gas partial pressure and operating temperature The responses to NO x and O 2 have been found to be maximal at 150 °C The optimum detection temperature for NO x occurs in the range 150–200 °C considering the response and recovery times In this range a very low response to O 2 is observed indicating that the sensor is very suitable for selective NO x detection

53 citations

Proceedings ArticleDOI
10 May 2009
TL;DR: In this paper, the authors presented the development of an H-band (220- 325 GHz) submillimeter-wave monolithic integrated circuit (S-MMIC) amplifier module for use in next generation active and passive high-resolution imaging systems operating around 300 GHz.
Abstract: In this paper, we present the development of an H-band (220 – 325 GHz) submillimeter-wave monolithic integrated circuit (S-MMIC) amplifier module for use in next generation active and passive high-resolution imaging systems operating around 300 GHz. Therefore, a variety of compact amplifier circuits has been realized by using an advanced 35 nm InAlAs/InGaAs based depletion-type metamorphic high electron mobility transistor (mHEMT) technology in combination with grounded coplanar waveguide (GCPW) circuit topology. A single-stage cascode design achieved a small-signal gain of 5.6 dB at 300 GHz and a linear gain of more than 5 dB between 258 and 308 GHz. Additionally, a four-stage amplifier S-MMIC based on conventional devices in common-source configuration was realized, demonstrating a maximum gain of 15.6 dB at 276 GHz and a linear gain of more than 12 dB over the frequency range from 264 to 300 GHz. Finally, mounting and packaging of the monolithic amplifier chips into H-band waveguide modules was accomplished with only minor reduction in circuit performance.

53 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Abstract: This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long-wavelength vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.

6,917 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: This review gives a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells, and discusses the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells.
Abstract: The need to develop inexpensive renewable energy sources stimulates scientific research for efficient, low-cost photovoltaic devices.1 The organic, polymer-based photovoltaic elements have introduced at least the potential of obtaining cheap and easy methods to produce energy from light.2 The possibility of chemically manipulating the material properties of polymers (plastics) combined with a variety of easy and cheap processing techniques has made polymer-based materials present in almost every aspect of modern society.3 Organic semiconductors have several advantages: (a) lowcost synthesis, and (b) easy manufacture of thin film devices by vacuum evaporation/sublimation or solution cast or printing technologies. Furthermore, organic semiconductor thin films may show high absorption coefficients4 exceeding 105 cm-1, which makes them good chromophores for optoelectronic applications. The electronic band gap of organic semiconductors can be engineered by chemical synthesis for simple color changing of light emitting diodes (LEDs).5 Charge carrier mobilities as high as 10 cm2/V‚s6 made them competitive with amorphous silicon.7 This review is organized as follows. In the first part, we will give a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells. In the second part, we will focus on conjugated polymer/fullerene bulk heterojunction solar cells, mainly on polyphenylenevinylene (PPV) derivatives/(1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) fullerene derivatives and poly(3-hexylthiophene) (P3HT)/PCBM systems. In the third part, we will discuss the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells. In the fourth part, we will suggest possible routes for further improvements and finish with some conclusions. The different papers mentioned in the text have been chosen for didactical purposes and cannot reflect the chronology of the research field nor have a claim of completeness. The further interested reader is referred to the vast amount of quality papers published in this field during the past decade.

6,059 citations