scispace - formally typeset
Search or ask a question
Author

Oliver Ambacher

Other affiliations: Osram, Siemens, Cornell University  ...read more
Bio: Oliver Ambacher is an academic researcher from Fraunhofer Society. The author has contributed to research in topics: Amplifier & High-electron-mobility transistor. The author has an hindex of 64, co-authored 848 publications receiving 26256 citations. Previous affiliations of Oliver Ambacher include Osram & Siemens.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new type of RF pad with novel screening features is presented and demonstrated to be capable of removing spurious artifacts from on-wafer S-parameter measurements up to 450 GHz.
Abstract: It is well known that, in the millimeter (mm-wave) and sub-mm-wave range, on-wafer S-parameter measurements are often inaccurate and suffer from serious systematic artifacts. In this paper, we confirm that these artifacts are related to spurious wave modes that are excited and propagate in the substrate. These parasitic wave components may be scattered at neighboring structures on the wafer and cause detrimental crosstalk. While these parasitic components deteriorate the measurement itself, an even more serious complication arises from the fact that these modes are already present in the calibration measurement and are unintentionally imported and superposed to the measurement data. In this paper, we present a new type of RF pad with novel screening features and show that these parasitic modes can be efficiently suppressed by the use of proper on-wafer couple structures. Moreover, a novel calibration substrate and method is presented and demonstrated to be capable to remove spurious artifacts from S-parameter measurements up to 450 GHz.

29 citations

Journal ArticleDOI
TL;DR: In this paper, a grain boundary model was proposed to understand the photoreduction and oxidation mechanism for the nanoparticle layers, and it was suggested that the nanoparticles are reactivated throughout the layer.
Abstract: In2O3 nanoparticles were synthesized at low substrate temperatures by the metal organic chemical vapor deposition technique. Nanoparticles with a mean diameter from 3 to 33 nm can be obtained by varying the growth temperature. Photoreduction and oxidation studies were carried out for particle-containing layers exhibiting a resistance change of more than five orders of magnitude after ultraviolet irradiation and oxidation by ozone. A grain boundary model was proposed to understand the photoreduction and oxidation mechanism for the nanoparticle layers. It was suggested that by photoreduction the nanoparticles are reactivated throughout the layer. The Schottky barrier between the nanoparticles decreases inducing a reduction of the space-charge-limited region. After oxidation, a completely depleted space-charge region covering the whole volume of In2O3 nanoparticles is formed. Furthermore, the bulk diffusion process dominates the response of thick layers during the oxidation process. By decreasing the layer t...

28 citations

Journal ArticleDOI
TL;DR: In this paper, a lattice-matched InAlGaN barrier with the help of the fin-shaped nano-channels provided improved gate control, increasing current densities, and transconductance.
Abstract: Through implementation of the 3-D tri-gate topology, GaN-based high-electron mobility transistors (HEMTs) have been fabricated and high-frequency performances as well as the short-channel effects are investigated. The designed tri-gate transistors are highly-scaled having 100 nm of gate length, which introduces the condition of a short channel. It is demonstrated that higher sub-threshold slopes, reduced drain-induced barrier lowering and better overall off-state performances have been achieved by the nano-channel tri-gate HEMTs with an AlGaN barrier. A lattice-matched InAlGaN barrier with the help of the fin-shaped nano-channels provide improved gate control, increasing current densities, and transconductance $g_{\mathrm{ m}} $ . In a direct comparison, very high drain current densities ( $\sim 3.8$ A/mm) and $g_{\mathrm{ m}} $ ( $\sim 550$ mS/mm) have further been obtained by employing a pure AlN barrier.

28 citations

Journal ArticleDOI
TL;DR: In this article, a broadband high-power amplifier (HPA) millimeter-wave integrated circuit (MMIC) covering the extended W-band (65-125 GHz) is reported.
Abstract: This paper reports on a broadband high-power amplifier (HPA) millimeter-wave integrated circuit (MMIC) covering the extended W-band (65–125 GHz). The MMIC is based on the Fraunhofer IAF 50-nm gate-length metamorphic high-electron-mobility transistor (mHEMT) technology. The HPA consists of two parallelized unit amplifiers. Each unit amplifier (UA) utilizes four stacked-HEMT unit power cells (UPCs) and four-way power combiners at the input and output. The UPCs stack four transistors with a gate width of $4\times 40~\mu \text{m}$ per HEMT. The UA achieves an average small-signal gain of 19.4 dB and an average saturated output power of 21.6 dBm at least from 70 to 110 GHz. The HPA yields an average small-signal gain of 16.8 dB and an average saturated output power of 22.5 dBm at least from 68 to 110 GHz. A peak output power of 24.1 dBm is achieved at an operating frequency of 75 GHz.

28 citations

Proceedings ArticleDOI
08 Oct 2002
TL;DR: In this paper, the technology and properties of surface acoustic wave (SAW) devices on AlN and GaN films are reviewed and the thermal behavior of these filters has been analyzed.
Abstract: In this paper, the technology and properties of surface acoustic wave (SAW) devices on AlN and GaN films are reviewed. The excellent characteristics of these materials for high frequency applications are demonstrated by the fabrication of SAW filters with central frequencies higher than 2.2 GHz. The thermal behavior of these filters has been analyzed. Finally, the integration of a SAW generator with a metal-semiconductor-metal photodetector is described, showing the important synergy resulting from such integration.

28 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Abstract: This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long-wavelength vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.

6,917 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: This review gives a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells, and discusses the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells.
Abstract: The need to develop inexpensive renewable energy sources stimulates scientific research for efficient, low-cost photovoltaic devices.1 The organic, polymer-based photovoltaic elements have introduced at least the potential of obtaining cheap and easy methods to produce energy from light.2 The possibility of chemically manipulating the material properties of polymers (plastics) combined with a variety of easy and cheap processing techniques has made polymer-based materials present in almost every aspect of modern society.3 Organic semiconductors have several advantages: (a) lowcost synthesis, and (b) easy manufacture of thin film devices by vacuum evaporation/sublimation or solution cast or printing technologies. Furthermore, organic semiconductor thin films may show high absorption coefficients4 exceeding 105 cm-1, which makes them good chromophores for optoelectronic applications. The electronic band gap of organic semiconductors can be engineered by chemical synthesis for simple color changing of light emitting diodes (LEDs).5 Charge carrier mobilities as high as 10 cm2/V‚s6 made them competitive with amorphous silicon.7 This review is organized as follows. In the first part, we will give a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells. In the second part, we will focus on conjugated polymer/fullerene bulk heterojunction solar cells, mainly on polyphenylenevinylene (PPV) derivatives/(1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) fullerene derivatives and poly(3-hexylthiophene) (P3HT)/PCBM systems. In the third part, we will discuss the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells. In the fourth part, we will suggest possible routes for further improvements and finish with some conclusions. The different papers mentioned in the text have been chosen for didactical purposes and cannot reflect the chronology of the research field nor have a claim of completeness. The further interested reader is referred to the vast amount of quality papers published in this field during the past decade.

6,059 citations