scispace - formally typeset
Search or ask a question
Author

Oliver Ambacher

Other affiliations: Osram, Siemens, Cornell University  ...read more
Bio: Oliver Ambacher is an academic researcher from Fraunhofer Society. The author has contributed to research in topics: Amplifier & High-electron-mobility transistor. The author has an hindex of 64, co-authored 848 publications receiving 26256 citations. Previous affiliations of Oliver Ambacher include Osram & Siemens.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an ion-sensitive field effect transistors (ISFET) based on a surface sensitive AlGaN/GaN heterostructure was used to construct a multi-parameter analysis system for aqueous solutions in the micro-to nanoliter range.
Abstract: GaN and its ternary alloys offer several advantages for the fabrication of biochemical sensors systems due to their chemical stability and optical transparency. We employ ion-sensitive field effect transistors (ISFET) based on a surface sensitive AlGaN/GaN heterostructure. Combined with a picoliter dosing system, an integrated micro reference electrode and an optical spectroscopy system a novel multi-parameter analysis system for aqueous solutions in the micro- to nanoliter range was constructed. Application examples are presented to illustrate the application potential of the sensor system e.g. in the high-throughput screening of cancer drugs. Simultaneous opto-electrochemical monitoring of enzyme reaction kinetics by pH and absorption measurements in 700 nl and parallel automated measurements with functionalized enzyme-modified FETs (EnFET) and a reference ISFET in 3 µl are demonstrated. The experimental data obtained agree well with published values for the reaction kinetic and with reference measurements performed with a state-of-the-art pH-meter and spectrophotometer which require 1000-fold larger volumes. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

21 citations

Journal ArticleDOI
TL;DR: In this paper, a 2-D hole gas (2DHG) was employed on top of the 2DEG to suppress the electric field peak in GaN-based heterostructure FETs.
Abstract: GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance Ron,dyn vs. the breakdown voltage Vbd. In literature, it has been shown that with a high Vbd, Ron,dyn is deteriorated. The impairment of Ron,dyn is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been de...

21 citations

Journal ArticleDOI
TL;DR: In this article, the piezoresponse force microscopy and an interferometric technique were used to measure the properties of Wurtzite AlN thin films on Si (111) substrates by reactive DC-sputtering and by metalorganic chemical vapor deposition.
Abstract: Piezoelectric properties of aluminium nitride thin films were measured using both, the piezoresponse force microscopy and an interferometric technique. Wurtzite AlN thin films were prepared on Si (111) substrates by reactive DC-sputtering and by metalorganic chemical vapor deposition. Direct measurements of the inverse piezoelectric effect in the picometer range showed that the acceptable tolerance in the crystal orientation is much larger for MEMS applications than expected previously. The value of the piezoelectric coefficient d33 for the prepared AlN thin films was determined to be 5.36 ± 0.25 pm/V for highly textured as well as for polycrystalline thin films with a (002) preferential orientation. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

21 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional electron gas (2DEG) was used for chemical and biological sensor applications, where the sensitivity of the 2DEG on the surrounding environment acts as additional sensing signal, for example for simultaneous measurements of the viscosity and pH value of a nanoliter droplet.
Abstract: Novel microelectromechanical resonators structures have been realized based on AlGaN/GaN heterostructures, which provide a basis for sophisticated sensor structures. There were grown on SiC substrates confining a two dimensional electron gas (2DEG). By means of the developed etching technology, freestanding resonators were patterned without degrading the sheet carrier concentration and electron mobility of the 2DEG inside the beams, which was confirmed by electrical measurements before and after the various process steps. As actuation and read out principle magnetomotive and piezoelectric effects were used, respectively. Due to the high sensitivity of the 2DEG and the chemical stability of the utilized materials these structures are suitable for chemical and biological sensor applications, where the sensitivity of the 2DEG on the surrounding environment acts as additional sensing signal, for example for simultaneous measurements of the viscosity and pH – value of a nanoliter droplet. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

21 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Abstract: This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long-wavelength vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.

6,917 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: This review gives a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells, and discusses the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells.
Abstract: The need to develop inexpensive renewable energy sources stimulates scientific research for efficient, low-cost photovoltaic devices.1 The organic, polymer-based photovoltaic elements have introduced at least the potential of obtaining cheap and easy methods to produce energy from light.2 The possibility of chemically manipulating the material properties of polymers (plastics) combined with a variety of easy and cheap processing techniques has made polymer-based materials present in almost every aspect of modern society.3 Organic semiconductors have several advantages: (a) lowcost synthesis, and (b) easy manufacture of thin film devices by vacuum evaporation/sublimation or solution cast or printing technologies. Furthermore, organic semiconductor thin films may show high absorption coefficients4 exceeding 105 cm-1, which makes them good chromophores for optoelectronic applications. The electronic band gap of organic semiconductors can be engineered by chemical synthesis for simple color changing of light emitting diodes (LEDs).5 Charge carrier mobilities as high as 10 cm2/V‚s6 made them competitive with amorphous silicon.7 This review is organized as follows. In the first part, we will give a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells. In the second part, we will focus on conjugated polymer/fullerene bulk heterojunction solar cells, mainly on polyphenylenevinylene (PPV) derivatives/(1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) fullerene derivatives and poly(3-hexylthiophene) (P3HT)/PCBM systems. In the third part, we will discuss the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells. In the fourth part, we will suggest possible routes for further improvements and finish with some conclusions. The different papers mentioned in the text have been chosen for didactical purposes and cannot reflect the chronology of the research field nor have a claim of completeness. The further interested reader is referred to the vast amount of quality papers published in this field during the past decade.

6,059 citations