scispace - formally typeset
Search or ask a question
Author

Oliver Ambacher

Other affiliations: Osram, Siemens, Cornell University  ...read more
Bio: Oliver Ambacher is an academic researcher from Fraunhofer Society. The author has contributed to research in topics: Amplifier & High-electron-mobility transistor. The author has an hindex of 64, co-authored 848 publications receiving 26256 citations. Previous affiliations of Oliver Ambacher include Osram & Siemens.


Papers
More filters
Journal ArticleDOI
Abstract: Plasma-induced molecular beam epitaxial AlInGaN heterostructures have been characterized by spatial resolved cathodoluminescence and x-ray energy dispersive microanalysis. Competitive incorporation of Al and In has been observed, with the formation of In-rich regions, showing enhanced luminescence around surface pinholes. These island-like In-rich regions are favored by growth at lower temperature due to the higher incorporation of indium into the alloy. The elastic strain relaxation associated to pinhole formation induces preferential local indium incorporation. The diffusion of carriers to these areas with reduced band gap enhances the luminescence emission of the quaternary film. The width and intensity of the luminescence appear to be sensitive to the mismatch between the quaternary film and the GaN layer below.

18 citations

Journal ArticleDOI
TL;DR: In this paper, the absolute Raman scattering efficiencies for first-order light scattering of optical zone-center phonons were determined for cubic and hexagonal GaN, and an improved method for the determination of scattering efficiency by comparative measurement with a standard substance such as BaF2 was used to minimize the experimental errors substantially.
Abstract: Absolute Raman scattering efficiencies for first-order light scattering of optical zone-center phonons were determined for cubic and hexagonal GaN. An improved method for the determination of scattering efficiencies by comparative measurement with a standard substance such as BaF2 was used to minimize the experimental errors substantially. © 1998 John Wiley & Sons, Ltd.

18 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the Franz-Keldysh oscillations for samples with (Al)Ga- and N-face polarity, and obtained values for the surface electric field up to F =380 kV cm−1 at room temperature.

18 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of the trigate GaN high electron mobility transistor (HEMT) body geometry on the device RF performance is investigated by 3-D numerical simulations, and the effect of gate length scaling on the RF behavior is studied and guidelines for design improvements are provided.
Abstract: The impact of the trigate GaN high electron mobility transistor (HEMT) body geometry on the device RF performance is investigated by 3-D numerical simulations. The trigate concept is a viable approach to achieve normally off operation and to suppress short-channel effects. The effect of gate length scaling on the RF behavior is studied and guidelines for design improvements are provided. Furthermore, it is shown that trigate HEMTs with improved body design and/or InAlN barriers causing a higher polarization charge than AlGaN can exhibit better RF figures of merit than planar GaN HEMTs.

18 citations

Journal ArticleDOI
TL;DR: In this paper, a micro-dosing head for pulmonary amounts of water-based liquids was realized, consisting of parallel operating multi-micro pipes running at a defined pressure, and 3C-SiC/Si heterostructures were used to process resonator bars having geometries in the μm range and a thickness of 250 nm.

18 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Abstract: This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long-wavelength vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.

6,917 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: This review gives a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells, and discusses the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells.
Abstract: The need to develop inexpensive renewable energy sources stimulates scientific research for efficient, low-cost photovoltaic devices.1 The organic, polymer-based photovoltaic elements have introduced at least the potential of obtaining cheap and easy methods to produce energy from light.2 The possibility of chemically manipulating the material properties of polymers (plastics) combined with a variety of easy and cheap processing techniques has made polymer-based materials present in almost every aspect of modern society.3 Organic semiconductors have several advantages: (a) lowcost synthesis, and (b) easy manufacture of thin film devices by vacuum evaporation/sublimation or solution cast or printing technologies. Furthermore, organic semiconductor thin films may show high absorption coefficients4 exceeding 105 cm-1, which makes them good chromophores for optoelectronic applications. The electronic band gap of organic semiconductors can be engineered by chemical synthesis for simple color changing of light emitting diodes (LEDs).5 Charge carrier mobilities as high as 10 cm2/V‚s6 made them competitive with amorphous silicon.7 This review is organized as follows. In the first part, we will give a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells. In the second part, we will focus on conjugated polymer/fullerene bulk heterojunction solar cells, mainly on polyphenylenevinylene (PPV) derivatives/(1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) fullerene derivatives and poly(3-hexylthiophene) (P3HT)/PCBM systems. In the third part, we will discuss the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells. In the fourth part, we will suggest possible routes for further improvements and finish with some conclusions. The different papers mentioned in the text have been chosen for didactical purposes and cannot reflect the chronology of the research field nor have a claim of completeness. The further interested reader is referred to the vast amount of quality papers published in this field during the past decade.

6,059 citations