scispace - formally typeset
Search or ask a question
Author

Oliver Ambacher

Other affiliations: Osram, Siemens, Cornell University  ...read more
Bio: Oliver Ambacher is an academic researcher from Fraunhofer Society. The author has contributed to research in topics: Amplifier & High-electron-mobility transistor. The author has an hindex of 64, co-authored 848 publications receiving 26256 citations. Previous affiliations of Oliver Ambacher include Osram & Siemens.


Papers
More filters
Journal ArticleDOI
TL;DR: Graphene acts as an active top electrode for solidly mounted BAW resonators (BAW-SMR) at 2.1 GHz resonance frequency and shows the potential of graphene in minimizing mechanical losses due to its virtually massless character.
Abstract: Mechanical and electrical losses induced by an electrode material greatly influence the performance of bulk acoustic wave (BAW) resonators. Graphene as a conducting and virtually massless 2D material is a suitable candidate as an alternative electrode material for BAW resonators which reduces electrode induced mechanical losses. In this publication we show that graphene acts as an active top electrode for solidly mounted BAW resonators (BAW-SMR) at 2.1 GHz resonance frequency. Due to a strong decrease of mass loading and its remarkable electronic properties, graphene demonstrates its ability as an ultrathin conductive layer. In our experiments we used an optimized graphene wet transfer on aluminum nitride-based solidly mounted resonator devices. We achieved more than a triplication of the resonator's quality factor Q and a resonance frequency close to an 'unloaded' resonator without metallization. Our results reveal the direct influence of both, the graphene quality and the graphene contacting via metal structures, on the performance characteristic of a BAW resonator. These findings clearly show the potential of graphene in minimizing mechanical losses due to its virtually massless character. Moreover, they highlight the advantages of graphene and other 2D conductive materials for alternative electrodes in electroacoustic resonators for radio frequency applications.

12 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the spectral response as a function of the applied voltage in the frameworks of the space-charge limited current model and found that the main source of PPC is traps above the Fermi level.
Abstract: The responsivity and the decay time of AlGaN solar blind UV-detectors have been studied. The photodetectors have shown a good spectral responsivity in a narrow spectral range (220 < A < 300 nm) and a short time response with the best estimated characteristic time constant of r∼ 30 ms measured at room temperature. Possible mechanisms responsible for the persistent photoconductivity (PPC) effect in Al x Ga 1-x N (x = 0.51) are analyzed. A shape of the spectral response as a function of the applied voltage is analyzed in the frameworks of the space-charge limited current model. It has been shown that the main source of PPC is traps above the Fermi level. PPC occurs when the density of free carriers equals the density of the traps. The model attributing PPC to the spatial separation of the photoexcited electrons and holes by the macroscopic potential barrier is not supported by our photocurrent studies.

12 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a Doherty power amplifier (DPA) in an $8\times 1$ active antenna transmitter module under an average voltage-standing-wave ratio of 4:1 induced by the array 1-D beam steering and mutual coupling was investigated.
Abstract: This letter investigates the performance of a Doherty power amplifier (DPA) in an $8\times 1$ active antenna transmitter module under an average voltage-standing-wave ratio of 4:1 induced by the array 1-D beam steering and mutual coupling. The GaN-based DPA and a $2\times 1$ segment of the array are verified via measurements at the operating frequency of 3.5 GHz. The co-design and co-simulation of both the antenna array and the behavioral model of the DPA show that the inherent back-off efficiency benefit—when compared to traditionally used class-AB and -B amplifiers in base stations—can be maintained when restricting the beam-steering angle, in this case $\theta \in $ [−45°, 45°], and operational bandwidth of the combined system.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the formation of two-dimensional hole and electron gases in GaN/AlGaN/GaN heterostructures both rely on the difference of the polarization between the AlGaN and the GaN layer.
Abstract: Two-dimensional hole and electron gases in wurtzite GaN/Al Ga 1xN/ GaN heterostructures areinduced by strong polarization induced effects. The sheet carrier concentration and the confinement of the two-dimensional carrier gases located close to one of the AlGaN/GaN interfaces are sensitive to a high number of different physical properties such as polarity, alloy composition, strain, thickness, and doping. We have investigated the structural quality, the carrier concentration profiles, and electrical transport properties by a combination of high resolution X-ray diffraction, Hall effect, and C—V profiling measurements. The investigated heterostructures with Nand Ga-face polarity were grown by metalorganic vapor phase or plasma induced molecular beam epitaxy covering a broad range of alloy compositions and barrier thickness. By comparison of theoretical and experimental results we demonstrate that the formation of two-dimensional hole and electron gases in GaN/AlGaN/GaN heterostructures both rely on the difference of the polarization between the AlGaN and the GaN layer. In addition the role of polarity on the carrier accumulation at different interfaces in nand p-doped heterostructures will be discussed in detail.

12 citations

Proceedings ArticleDOI
10 May 2015
TL;DR: In this article, a quasi-normally off gallium nitride (GaN) transistor with positive gate threshold voltage based on depletion-mode technology is presented, which is suitable for gate drivers or logic circuits.
Abstract: This work presents a quasi-normally-off gallium nitride (GaN) transistor with positive gate threshold voltage based on depletion-mode technology, suitable for gate drivers or logic circuits. Quasi-normally-off behaviour is achieved by the series connection of multiple Schottky diodes in the source path of an initially normally-on transistor. As opposed to conventional approaches, a novel quasi-normally-off gate driver circuit avoids the static shoot-through current path in the driver final stage and ensures a safe blocking state of a d-mode power switch in case of driver failure with only one negative driver supply voltage. For evaluation a hybrid integrated GaN power module is built, comprising a 2.4 A gate driver and 600 V/ 24 A boost converter switching cell. Measurements of pulsed inductive switching up to 274 V/ 12 A show gate voltage rise and fall times of 5.4 ns and 3.8 ns, boost converter switch node transition times as low as 1.6 ns and 1.2 ns, and maximum slew-rates up to 91 V/ns during turn-on transitions, and up to 177 V/ns during turn-off transitions, respectively.

12 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Abstract: This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long-wavelength vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.

6,917 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: This review gives a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells, and discusses the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells.
Abstract: The need to develop inexpensive renewable energy sources stimulates scientific research for efficient, low-cost photovoltaic devices.1 The organic, polymer-based photovoltaic elements have introduced at least the potential of obtaining cheap and easy methods to produce energy from light.2 The possibility of chemically manipulating the material properties of polymers (plastics) combined with a variety of easy and cheap processing techniques has made polymer-based materials present in almost every aspect of modern society.3 Organic semiconductors have several advantages: (a) lowcost synthesis, and (b) easy manufacture of thin film devices by vacuum evaporation/sublimation or solution cast or printing technologies. Furthermore, organic semiconductor thin films may show high absorption coefficients4 exceeding 105 cm-1, which makes them good chromophores for optoelectronic applications. The electronic band gap of organic semiconductors can be engineered by chemical synthesis for simple color changing of light emitting diodes (LEDs).5 Charge carrier mobilities as high as 10 cm2/V‚s6 made them competitive with amorphous silicon.7 This review is organized as follows. In the first part, we will give a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells. In the second part, we will focus on conjugated polymer/fullerene bulk heterojunction solar cells, mainly on polyphenylenevinylene (PPV) derivatives/(1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) fullerene derivatives and poly(3-hexylthiophene) (P3HT)/PCBM systems. In the third part, we will discuss the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells. In the fourth part, we will suggest possible routes for further improvements and finish with some conclusions. The different papers mentioned in the text have been chosen for didactical purposes and cannot reflect the chronology of the research field nor have a claim of completeness. The further interested reader is referred to the vast amount of quality papers published in this field during the past decade.

6,059 citations