scispace - formally typeset
Search or ask a question
Author

Oliver D. Mücke

Bio: Oliver D. Mücke is an academic researcher from University of Hamburg. The author has contributed to research in topics: Laser & Attosecond. The author has an hindex of 34, co-authored 162 publications receiving 4650 citations. Previous affiliations of Oliver D. Mücke include Karlsruhe Institute of Technology & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
08 Jun 2012-Science
TL;DR: By guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo–electron volts, allowing, in principle, the generation of pulses as short as 2.5 attoseconds.
Abstract: High-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo-electron volts, allowing, in principle, the generation of pulses as short as 2.5 attoseconds. The multiatmosphere gas pressures required for bright, phase-matched emission also support laser beam self-confinement, further enhancing the x-ray yield. Finally, the x-ray beam exhibits high spatial coherence, even though at high gas density the recolliding electrons responsible for HHG encounter other atoms during the emission process.

1,475 citations

Journal ArticleDOI
TL;DR: A robust generation method of intense isolated attosecond pulses is proposed and demonstrated, which enable us to perform a nonlinear attose Cond optics experiment and is the shortest and highest-energy pulse ever with the ability to induce nonlinear phenomena.
Abstract: The short duration of attosecond pulses makes them interesting for ultrafast experiments, although it has so far been difficult to generate isolated attosecond pulses with sufficiently high power. Here the authors achieve high-intensity isolated attosecond pulses with a tabletop setup, based on a scaled-up high-order harmonic generation process.

324 citations

Journal ArticleDOI
TL;DR: An accurate analytic model describing the microscopic mechanism of high-harmonic generation (HHG) in solids is derived and it is shown that it is possible to predict the laser polarization for optimal HHG in bulk crystals solely from the knowledge of their electronic band structure.
Abstract: Advanced first-principles calculations reveal that the generation of high harmonic spectra is enhanced by the inhomogeneity of the electron\penalty1000\-\allowhyphens{}-nuclei potential, which is obtained from the band structure.

243 citations

Journal ArticleDOI
TL;DR: The proposed method enables the requirements for the pump pulse duration to be relaxed but also to reduce ionization of the harmonic medium, which opens the door to create an intense isolated attosecond pulse using a conventional femtosecond laser system.
Abstract: We propose and demonstrate the generation of a continuum high-order harmonic spectrum by mixing multicycle two-color (TC) laser fields with the aim of obtaining an intense isolated attosecond pulse. By optimizing the wavelength of a supplementary infrared pulse in a TC field, a continuum harmonic spectrum was created around the cutoff region without carrier-envelope phase stabilization. The obtained harmonic spectra clearly show the possibility of generating isolated attosecond pulses from a multicycle TC laser field, which is generated by an 800 nm, 30 fs pulse mixed with a 1300 nm, 40 fs pulse. Our proposed method enables us not only to relax the requirements for the pump pulse duration but also to reduce ionization of the harmonic medium. This concept opens the door to create an intense isolated attosecond pulse using a conventional femtosecond laser system.

204 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the conceptual schemes and experimental tools that can be employed for the generation, amplification, control, and combination of separate light pulses, and the main techniques for the spectrotemporal characterization of the synthesized fields are also described.
Abstract: The generation of sub-optical-cycle, carrier–envelope phase-stable light pulses is one of the frontiers of ultrafast optics. The two key ingredients for sub-cycle pulse generation are bandwidths substantially exceeding one octave and accurate control of the spectral phase. These requirements are very challenging to satisfy with a single laser beam, and thus intense research activity is currently devoted to the coherent synthesis of pulses generated by separate sources. In this review we discuss the conceptual schemes and experimental tools that can be employed for the generation, amplification, control, and combination of separate light pulses. The main techniques for the spectrotemporal characterization of the synthesized fields are also described. We discuss recent implementations of coherent waveform synthesis: from the first demonstration of a single-cycle optical pulse by the addition of two pulse trains derived from a fiber laser, to the coherent combination of the outputs from optical parametric chirped-pulse amplifiers.

179 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
01 Aug 2006-Small
TL;DR: A review of current research on the optical properties of ZnO nanostructures and results of nonlinear optical studies, such as second-harmonic generation, are presented.
Abstract: We present a review of current research on the optical properties of ZnO nanostructures. We provide a brief introduction to different fabrication methods for various ZnO nanostructures and some general guidelines on how fabrication parameters (temperature, vapor-phase versus solution-phase deposition, etc.) affect their properties. A detailed discussion of photoluminescence, both in the UV region and in the visible spectral range, is provided. In addition, different gain (excitonic versus electron hole plasma) and feedback (random lasing versus individual nanostructures functioning as Fabry-Perot resonators) mechanisms for achieving stimulated emission are described. The factors affecting the achievement of stimulated emission are discussed, and the results of time-resolved studies of stimulated emission are summarized. Then, results of nonlinear optical studies, such as second-harmonic generation, are presented. Optical properties of doped ZnO nanostructures are also discussed, along with a concluding outlook for research into the optical properties of ZnO.

1,746 citations

Proceedings Article
Ferenc Krausz1
01 Aug 2007
TL;DR: In this paper, an attosecond "oscilloscope" was used to visualize the oscillating electric field of visible light with an oscillator and probe multi-electron dynamics in atoms, molecules and solids.
Abstract: Summary form only given. Fundamental processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length scales tends to unfold within tens to thousands of attoseconds (1 attosecond [as] = 10-18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics. The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 femtosecond = 1000 attoseconds). Atoms exposed to a few oscillations cycles of intense laser light are able to emit a single extreme ultraviolet (XUV) burst lasting less than one femtosecond. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles have recently allowed the reproducible generation and measurement of isolated sub-femtosecond XUV pulses, demonstrating the control of microscopic processes (electron motion and photon emission) on an attosecond time scale. These tools have enabled us to visualize the oscillating electric field of visible light with an attosecond "oscilloscope", to control single-electron and probe multi-electron dynamics in atoms, molecules and solids. Recent experiments hold promise for the development of an attosecond X-ray source, which may pave the way towards 4D electron imaging with sub-atomic resolution in space and time.

1,618 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the emerging field of mid-infrared frequency comb generation, including technologies based on novel laser gain media, nonlinear frequency conversion and micro-resonators.
Abstract: This Review discusses the emerging field of mid-infrared frequency comb generation, including technologies based on novel laser gain media, nonlinear frequency conversion and microresonators, as well as the applications of these combs in precision spectroscopy and direct frequency comb spectroscopy. Laser frequency combs are coherent light sources that emit a broad spectrum of discrete, evenly spaced narrow lines whose absolute frequency can be measured to within the accuracy of an atomic clock. Their development in the near-infrared and visible domains has revolutionized frequency metrology while also providing numerous unexpected opportunities in other fields such as astronomy and attosecond science. Researchers are now exploring how to extend frequency comb techniques to the mid-infrared spectral region. Versatile mid-infrared frequency comb generators based on novel laser gain media, nonlinear frequency conversion or microresonators promise to significantly expand the applications of frequency combs. In particular, novel approaches to molecular spectroscopy in the 'fingerprint region', with dramatically improved precision, sensitivity, recording time and/or spectral bandwidth may lead to new discoveries in the various fields relevant to molecular science.

1,161 citations