scispace - formally typeset
Search or ask a question

Showing papers by "Oliver L. Phillips published in 2008"


Journal ArticleDOI
TL;DR: Evidence for concerted changes in the structure, dynamics and composition of old-growth Amazonian forests in the late twentieth century is examined and any switch from carbon sink to source would have profound implications for global climate, biodiversity and human welfare.
Abstract: than 10 cm diameter increased by 0.62G0.23 t C ha K1 yr K1 averaged across the basin. This implies a carbon sink in Neotropical old-growth forest of at least 0.49G0.18 Pg C yr K1 . If other biomass and necromass components are also increased proportionally, then the old-growth forest sink here has been 0.79G0.29 Pg C yr K1 , even before allowing for any gains in soil carbon stocks. This is approximately equal to the carbon emissions to the atmosphere by Amazon deforestation. There is also evidence for recent changes in Amazon biodiversity. In the future, the growth response of remaining old-growth mature Amazon forests will saturate, and these ecosystems may switch from sink to source driven by higher respiration (temperature), higher mortality (as outputs equilibrate to the growth inputs and periodic drought) or compositional change (disturbances). Any switch from carbon sink to source would have profound implications for global climate, biodiversity and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions among millions of species.

250 citations


Journal ArticleDOI
TL;DR: This study shows that despite fundamental floristic and dynamic differences between the two Amazonian regions, mortality risk can be predicted with mixed-species, individual-based statistical models and that the predictors are remarkably similar, such that tree growth and wood density both play important roles.
Abstract: Summary 1. Tree mortality is an important process in forest ecology. We explored the extent to which tropical tree death is a predictable outcome of taxon and individual level properties by means of mixedspecies logistic regression, for trees ≥ 10 cm in diameter. We worked in two lowland forest regions with markedly different floristic composition and dynamic regimes ‐ the high wood density, lowmortality northeastern (NE) Amazon (in eastern Venezuela), and the low wood density, highmortality northwestern (NW) Amazon (in northern Peru). 2. Among those genera that are shared between regions there were no detectable regional differences in mortality rates. This suggests that floristic compositional differences are a major driver of the twofold regional contrast in stand-level mortality. 3. In NE forests, mortality risk of individual trees is best predicted by low taxon-level wood density, slow relative growth, and large size, reflecting phylogenetically determined life-history strategy, physiological stress and senescence. 4. In NW forests, trees with low wood density and slow relative growth are also at most risk, but probability of death is independent of tree size, indicating that senescence is unimportant in this region. 5. Synthesis. This study shows that despite fundamental floristic and dynamic differences between the two Amazonian regions, mortality risk can be predicted with mixed-species, individual-based statistical models and that the predictors are remarkably similar, such that tree growth and wood density both play important roles.

155 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present and discuss the best methods to estimate live above ground biomass in the Atlantic Forest, which is a function of wood volume, obtained from the diameter and height, architecture and wood density (dry weight per unit volume of fresh wood).
Abstract: The main objective of this paper is to present and discuss the best methods to estimate live above ground biomass in the Atlantic Forest. The methods presented and conclusions are the products of a workshop entitled "Estimation of Biomass and Carbon Stocks: the Case of Atlantic Rain Forest". Aboveground biomass (AGB) in tropical forests is mainly contained in trees. Tree biomass is a function of wood volume, obtained from the diameter and height, architecture and wood density (dry weight per unit volume of fresh wood). It can be quantified by the direct (destructive) or indirect method where the biomass quantification is estimated using mathematical models. The allometric model can be site specific when elaborated to a particular ecosystem or general that can be used in different sites. For the Atlantic Forest, despite the importance of it, there are only two direct measurements of tree biomass, resulting in allometric models specific for this ecosystem. To select one or other of the available models in the literature to estimate AGB it is necessary take into account what is the main question to be answered and the ease with which it is possible to measure the independent variables in the model. Models that present more accurate estimates should be preferred. However, more simple models (those with one independent variable, usually DBH) can be used when the focus is monitoring the variation in carbon storage through the time. Our observations in the Atlantic Forest suggest that pan-tropical relations proposed by Chave et al. (2005) can be confidently used to estimated tree biomass across biomes as long as tree diameter (DBH), height, and wood density are accounted for in the model. In Atlantic Forest, we recommend the quantification of biomass of lianas, bamboo, palms, tree ferns and epiphytes, which are an important component in this ecosystem. This paper is an outcome of the workshop entitled "Estimation of Biomass and Carbon Stocks: the Case of Atlantic Rain Forest", that was conducted at Ubatuba, Sao Paulo, Brazil, between 4 and 8 December 2006 as part of the Brazilian project "Ombrophylus Dense Forest floristic composition, structure and function at the Nucleos Picinguaba and Santa Virginia of the Serra do Mar State Park", BIOTA Gradiente.

119 citations


Journal ArticleDOI
TL;DR: The availability of host trees and their characteristics may be more important than the direct effects of the physical environment in controlling the success of lianas in Neotropical forests.
Abstract: Aim We seek to determine the factors which control the success of lianas across macroecological gradients. Lianas have a strong impact on the growth, mortality and biomass of tropical trees, and are reported to be increasing in dominance, so understanding their behaviour is important from the perspectives of both ecological and global change. Location Lowland and montane Neotropical forests. Methods Using 65 standardized samples of lianas ( ≥ 2.5 cm diameter) from across the Neotropics, we attempted to account for characteristics of both the environment and the forest in explaining macroecological variation in liana success in Neotropical forests, using regression analyses and structural equation modelling. Results We found that both liana density and basal area were unrelated to mean annual precipitation, dry season length or soil variables, except for a weak effect of mean annual precipitation on liana basal area. Structural characteristics of the forest explained more of the variation in liana density and basal area than the physical environment. More disturbed forests generally tended to have a higher liana density. Liana basal area, however, was highest in undisturbed forests. Main conclusions The availability of host trees and their characteristics may be more important than the direct effects of the physical environment in controlling the success of lianas in Neotropical forests. Changes to the tropical climate in the coming century may not strongly affect lianas directly, but could have very substantial indirect effects via changes in tree community structure and dynamics.

102 citations


Journal ArticleDOI
TL;DR: In this article, the impacts of selective logging on species composition and spatial patterns of vegetation structure and tree diversity in Sabah, Borneo were examined, showing that selectively logged forest can retain considerable conservation value.
Abstract: Selective logging of tropical forests imposes spatial pattern on the landscape by creating a mosaic of patches affected by different intensities of disturbance. To understand the ecological impacts of selective logging it is therefore necessary to explore how patterns of tree species composition are affected by this patchy disturbance. This study examines the impacts of selective logging on species composition and spatial patterns of vegetation structure and tree diversity in Sabah, Borneo. We compare tree diversity between logged and unlogged forest at three scales: species richness within plots, species turnover among plots, and total species richness and composition of plots combined. Logging had no effect on tree diversity measured at the smallest scale. Logged forest had a greater rate of species turnover with distance, so at a large spatial scale it supported more tree species than the relatively homogeneous unlogged area. Tree species composition also differed significantly between the two types of forest, with more small dipterocarps and large pioneers in logged forest, and more large dipterocarps in unlogged forest. Our results emphasize the importance of sampling at a sufficiently large scale to represent patterns of biodiversity within tropical forest landscapes. Large areas of production forest in SE Asia are threatened with conversion to commercial crops; our findings show that selectively logged forest can retain considerable conservation value.

87 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe patterns of tree community change along a 700-km transect through terra firme forests of western Amazonia, running from the base of the Ande si n Ecuador to the Peru-Brazil border.
Abstract: We describe patterns of tree community change along a 700-km transect through terra firme forests of western Amazonia, running from the base of the Ande si n Ecuador to the Peru‐Brazil border. Our primary question is whether floristic variation at large scales arises from many gradual changes or a few abrupt ones. Data from 54 1-ha tree plots along the transect support the latter model, showing two sharp discontinuities in community structure at the genus level. One is located near the Ecuador‐Peru border, where the suite of species that dominates large areas of Ecuadorean forest declines abruptly in importance to the east. This discontinuity is underlain by a subterranean paleoarch and congruent with a change in soil texture. A second discontinuity is associated with the shift from clay to white sand soils near Iquitos. We hypothesize that the first discontinuity is part of an edaphic boundary that runs along the Andean piedmont and causes a transition from tree communities preferring richer, younger soils near the base of the Andes to those preferring poorer, older soils farther east. Because the floristic changes observed at this discontinuity are conserved for large distances to the east and west of it, the discontinuity is potentially key for understanding floristic variation in western Amazonia. The significant

78 citations


Journal ArticleDOI
TL;DR: The association between crown infestation and tree traits suggests that increases in liana dominance in Amazonian forests could cause changes in forest composition, including favouring faster growing tree species with low density wood, potentially reducing the carbon stored by mature forests.
Abstract: Question: In Amazonian moist forest, four questions arose: 1. Do tree species differ in their susceptibility to lianas? 2. What host tree traits (branch-free bole height, growth rate, bark type, leaf length and adult stature) are correlated with the susceptibility of tree species to lianas infesting the trunk and the crown? 3. To what extent do spatial variables (proximity to liana-infested trees and the light environment of the tree crown) affect the likelihood of liana infestation? 4. Are spatial variables or tree traits relatively more important in influencing the susceptibility of trees to lianas? We address all questions separately for trunk and crown infestation. Location: Tambopata Nature Reserve, Peru. Methods: We collected information on liana infestation, tree morphological traits, growth, light-environment and position for 3675 trees in seven 1-ha permanent sample plots. We separated trunk from crown infestation and used correlation and logistic regression analyses for tree species and...

70 citations


Journal ArticleDOI
TL;DR: In this article, the first measurements of both coarse woody debris (CWD) wood density and necromass in humid, lowland northwestern Amazonia, using bimodal data were reported.
Abstract: Coarse woody debris (CWD) is a rarely studied component of the carbon cycle. We report the first measurements of both CWD wood density and necromass in humid, lowland northwestern Amazonia, using b...

60 citations


Journal ArticleDOI
TL;DR: Tree-level annual diameter increments and annual above-ground biomass increments were compared in eight long-term plots in hyper-diverse northwest Amazonia to wood density (ρ; a proxy for shade tolerance), whilst also controlling for resource supply and soil fertility to confirm expected differences in allocation associated with shade tolerance.
Abstract: Species’ functional traits may help determine rates of carbon gain, with physiological and morphological trade-offs relating to shade tolerance affecting photosynthetic capacity and carbon allocation strategies. However, few studies have examined these trade-offs from the perspective of whole-plant biomass gain of adult trees. We compared tree-level annual diameter increments and annual above-ground biomass (AGB) increments in eight long-term plots in hyper-diverse northwest Amazonia to wood density (ρ; a proxy for shade tolerance), whilst also controlling for resource supply (light and soil fertility). ρ and annual diameter increment were negatively related, confirming expected differences in allocation associated with shade tolerance, such that light-demanding species allocate a greater proportion of carbon to diameter gain at the expense of woody tissue density. However, contrary to expectations, we found a positive relationship between ρ and annual AGB increment in more fertile sites, although AGB gain did not differ significantly with ρ class on low-fertility sites. Whole-plant carbon gain may be greater in shade-tolerant species due to higher total leaf area, despite lower leaf-level carbon assimilation rates. Alternatively, rates of carbon loss may be higher in more light-demanding species: higher rates of litterfall, respiration or allocation to roots, are all plausible mechanisms. However, the relationships between ρ and AGB and diameter increments were weak; resource availability always exerted a stronger influence on tree growth rates.

34 citations


Journal ArticleDOI
TL;DR: In this article, a direct relationship exists between the relative abundance of woody plant genera and precipitation regime along the north-south climate gradient of the western Amazon, and the results suggest that moisture variable seasonality influences community composition in a manner that can be related to the life-history trade-off between shade tolerance and pioneer ranking.
Abstract: Aim: To test whether a direct relationship exists between the relative abundance of woody plant genera and precipitation regime along the north-south climate gradient of the western Amazon. Location: Lowland rain forests in the western Amazon. Methods: Floristic data on 91 woody plant genera, from 39 0.1-ha plots across the western Amazon, and precipitation data from a 0.5° global data set were used to test for correlations between plant relative abundance (defined as percentage number of stems ≥ 2.5 cm diameter at breast height for each woody plant genus per plot) and derived dry-season variables. Moisture preference was then assessed in terms of pioneer and shade-tolerant life-history strategy. Results: There were significant associations between the distribution of plant relative abundances and seasonal precipitation variables in 34% of genera analysed. Significant differences were identified in size-class distribution between dry affiliates and generalists. Dry affiliates were not dominant in any size class in any plot type, whereas climate generalists dominated most of the size classes in the dry plots and the mid-range size classes in the wet plots. Dry-affiliate genera were a minority, even in dry forests. Wet-affiliate genera were correlated with shade tolerance, whereas genera with no rainfall affiliation were often pioneers. Main conclusions: The results suggest that moisture variable seasonality influences community composition in a manner that can be related to the life-history trade-off between shade tolerance and pioneer ranking. One possible reason for higher diversity in wetter forests is that high rainfall amplifies the niche space available to shade-tolerant plants. Determining which plant groups are constrained by which environmental variables can contribute to our understanding of how forest composition may be changing now, and how it may change under future climate: if shade-tolerant trees are also drought-intolerant, community structure in wet forests may be more vulnerable to future increases in moisture stress.

33 citations


Journal Article
TL;DR: Analysis of variance showed significant differences in average D x across the sample plots as well as significant differences between families, genera and species, supported by the observation that the xylem density of the more widely distributed species varied systematically from plot to plot.
Abstract: Measurements of branch xylem density, Dx, were made for 1466 trees representing 503 species, sampled from 80 sites across the Amazon basin. Measured values ranged from 240 kg m?3 for a Brosimum parinarioides from Tapajos in West Para, Brazil to 1130 kg m?3 for an Aiouea sp. from Caxiuana, Central Para, Brazil. Analysis of variance showed significant differences in average Dx across the sample plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that geographic location and plot accounted for 33% of the variation with species identity accounting for an additional 27%; the remaining "residual" 40% of the variance accounted for by tree to tree (within species) variation. Variations in plot means, were, however, hardly accountable at all by differences in species composition. Rather, it would seem that variations of xylem density at plot level must be explained by the effects of soils and/or climate. This conclusion is supported by the observation that the xylem density of the more widely distributed species varied systematically from plot to plot. Thus, as well as having a genetic component branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing and in a predictable manner. Exceptions to this general rule may be some pioneers belonging to Pourouma and Miconia and some species within the genera Brosimum, Rinorea and Trichillia which seem to be more constrained in terms of this plasticity than most species sampled as part of this study.