scispace - formally typeset
Search or ask a question
Author

Oliver L. Phillips

Bio: Oliver L. Phillips is an academic researcher from University of Leeds. The author has contributed to research in topics: Biodiversity & Amazon rainforest. The author has an hindex of 98, co-authored 336 publications receiving 50569 citations. Previous affiliations of Oliver L. Phillips include University of York & University of Brasília.


Papers
More filters
Journal ArticleDOI
TL;DR: The lack of spatially congruent phylogeographic breaks across species suggests no common biogeographic history of these Amazonian tree species, which could be related to proposed Pleistocene refugia or the presence of geological arches in western Amazonia.
Abstract: Various historical processes have been put forth as drivers of patterns in the spatial distribution of Amazonian trees and their population genetic variation. We tested whether five widespread tree species show congruent phylogeographic breaks and similar patterns of demographic expansion, which could be related to proposed Pleistocene refugia or the presence of geological arches in western Amazonia. We sampled Otoba parvifolia/glycycarpa (Myristicaceae), Clarisia biflora, Poulsenia armata, Ficus insipida (all Moraceae), and Jacaratia digitata (Caricaceae) across the western Amazon Basin. Plastid DNA (trnH–psbA; 674 individuals from 34 populations) and nuclear ribosomal internal transcribed spacers (ITS; 214 individuals from 30 populations) were sequenced to assess genetic diversity, genetic differentiation, population genetic structure, and demographic patterns. Overall genetic diversity for both markers varied among species, with higher values in populations of shade‐tolerant species than in pioneer species. Spatial analysis of molecular variance (SAMOVA) identified three genetically differentiated groups for the plastid marker for each species, but the areas of genetic differentiation were not concordant among species. Fewer SAMOVA groups were found for ITS, with no detectable genetic differentiation among populations in pioneers. The lack of spatially congruent phylogeographic breaks across species suggests no common biogeographic history of these Amazonian tree species. The idiosyncratic phylogeographic patterns of species could be due instead to species‐specific responses to geological and climatic changes. Population genetic patterns were similar among species with similar biological features, indicating that the ecological characteristics of species impact large‐scale phylogeography.

15 citations

Journal ArticleDOI
TL;DR: ForestPlots.net is a web application developed to provide a secure online environment for long-term forest plot data for researchers worldwide working within international networks such as RAINFOR, AFRITRON, and TROBIT, allowing scientists to manage, analyse, and compare their data to other sites.
Abstract: Compiling and analysing tropical forests plot data has provided key insights into the population and carbon dynamics of tropical forests. ForestPlots.net is a web application developed to provide a secure online environment for long-term forest plot data for researchers worldwide working within international networks such as RAINFOR, AFRITRON, and TROBIT, allowing scientists to manage, analyse, and compare their data to other sites. The underlying database (GIVD ID 00-00-001) in ForestPlots.net is a relational database which utilizes more than 50 tables to store plot location, individual taxonomic information and repeated diameter measurements for trees. Currently the database holds information on more than 800 plots from 27 countries with approximately half a million tropical trees tagged, measured, and monitored through time. The web application allows users, depending on their permission level, to view, edit, upload and download data of the plots they have access to. A novel feature of the database is the query library which produces outputs for the selected plots on biomass, basal area, wood productivity, and stem dynamics.

15 citations

Journal ArticleDOI
TL;DR: In this article, the relationship among richness, diversity, abundance and distribution of liana species in different vegetation formation types along a gradient within a savanna-forest transition zone in central Brazil was determined.
Abstract: Background: Lianas strongly influence tropical forest dynamics and diversity. Aims: To determine the relationship among richness, diversity, abundance and distribution of liana species in different vegetation formation types along a gradient within a savanna–forest transition zone in central Brazil. Methods: All liana species were identified and their girth measurements (≥5 cm) taken in one 1 ha plot at each of 15 sites that encompassed a range of vegetation types: dystrophic cerradao (tall closed woodland cerrado), gallery forest, flooded forest, semi-deciduous seasonal forest (one monodominant) and evergreen forest. We evaluated and compared the communities in terms of richness, community diversity (Shannon's H’), equitability (Hurlbert's, PIE), and the distribution of liana abundance. Results: In total, 1467 individual lianas belonging to 65 species, 41 genera and 17 families were recorded in the 15 ha sampled. The value of H’ varied from 0–2.47, and that of PIE ranged from 0–0.90. While flooded forest...

15 citations

Book ChapterDOI
01 Jan 2016
TL;DR: In this paper, the structural, dynamic, and compositional changes which have affected mature Amazon forests have been investigated and the results suggest that the tropical biome has been responding for many years to large-scale drivers of atmospheric and climatic change.
Abstract: RAINFOR is a long-term collaboration to understand the dynamics of Amazon ecosystems from the ground-up. Using a framework for systematic monitoring of the forests centred on replicated, permanent plots that measure ecosystem composition and behaviour over time, researchers carefully track the lives, deaths, and identities of trees at hundreds of plots basin-wide. Here we summarise findings from the last three decades in terms of the structural, dynamic, and compositional changes which have affected mature Amazon forests. At large scale, Amazon forests have experienced accelerated growth and mortality for decades, with a long-term increase in biomass carbon stocks within remaining intact forests. The results suggest that the tropical biome has been responding for many years to large-scale drivers of atmospheric and climatic change. Repeated, standardised, careful, and adequately replicated on-the-ground measurements, coupled with targeted experiments and physiological measurements, are key to making significant progress towards understanding changes in forest biodiversity and carbon.

14 citations

Journal ArticleDOI
TL;DR: In this article, the authors characterize the floristic composition of forests in the Amazonian-Cerrado transition zone and explore the degree and drivers of differentiation within and across Araguaia and Xingu watersheds.
Abstract: The loss of biodiversity in transitional forests between the Cerrado and Amazonia, the two largest neotropical phytogeographic domains, is an issue of great concern. This extensive region is located within the ‘arc of deforestation’ zone where tropical forests are being lost at the fastest rate on the planet, but floristic diversity and variation among forests here is still poorly understood. We aimed to characterize the floristic composition of forests in this zone and explored the degree and drivers of differentiation within and across Araguaia and Xingu watersheds. In 10 sites we identified all trees with diameter 10 cm; these totaled 4944 individuals in 257 species, 107 genera and 52 families. We evaluated the data for multivariate variation using TWINSPAN and DCA to understand the species distribution among sites. There was a larger contribution from the Amazonian flora (169 species) than that of the Cerrado (109) to the transitional forests. Remarkably, 142 species (55%) were restricted to only one sampling site, while 29 species (>16%) are endemic to Brazil, suggesting potentially large loss of species and unique forest communities with the loss and fragmentation of large areas. Our results also suggest that watersheds may be a critical factor driving species distribution among forests in the Amazonian–Cerrado transition zone, and quantifying their role can provide powerful insight into devising better conservation strategies for the remaining forests.

14 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: In this paper, the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data was introduced, which is a general-purpose machine learning method with a simple and precise mathematical formulation.

13,120 citations

Journal ArticleDOI
TL;DR: This work compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date and found that presence-only data were effective for modelling species' distributions for many species and regions.
Abstract: Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.

7,589 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations