scispace - formally typeset
Search or ask a question
Author

Oliver Mason

Bio: Oliver Mason is an academic researcher from Maynooth University. The author has contributed to research in topics: Linear system & Lyapunov function. The author has an hindex of 28, co-authored 106 publications receiving 4206 citations. Previous affiliations of Oliver Mason include Science Foundation Ireland & Yale University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper considers the stability of switched systems in which there are constraints on the switching rules, through both dwell-time requirements and state-dependent switching laws, and discusses the theory of Lyapunov functions and the existence of converse theorems.
Abstract: The study of the stability properties of switched and hybrid systems gives rise to a number of interesting and challenging mathematical problems. The objective of this paper is to outline some of these problems, to review progress made in solving them in a number of diverse communities, and to review some problems that remain open. An important contribution of our work is to bring together material from several areas of research and to present results in a unified manner. We begin our review by relating the stability problem for switched linear systems and a class of linear differential inclusions. Closely related to the concept of stability are the notions of exponential growth rates and converse Lyapunov theorems, both of which are discussed in detail. In particular, results on common quadratic Lyapunov functions and piecewise linear Lyapunov functions are presented, as they represent constructive methods for proving stability and also represent problems in which significant progress has been made. We also comment on the inherent difficulty in determining stability of switched systems in general, which is exemplified by NP-hardness and undecidability results. We then proceed by considering the stability of switched systems in which there are constraints on the switching rules, through both dwell-time requirements and state-dependent switching laws. Also in this case the theory of Lyapunov functions and the existence of converse theorems are reviewed. We briefly comment on the classical Lur'e problem and on the theory of stability radii, both of which contain many of the features of switched systems and are rich sources of practical results on the topic. Finally we present a list of questions and open problems which provide motivation for continued research in this area.

1,018 citations

Journal ArticleDOI
TL;DR: A survey of the use of graph theoretical techniques in biology is presented in this article, with an emphasis on synchronisation and disease propagation, as well as the link between structural network properties and dynamics.
Abstract: A survey of the use of graph theoretical techniques in Biology is presented. In particular, recent work on identifying and modelling the structure of bio-molecular networks is discussed, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronisation and disease propagation.

415 citations

Journal ArticleDOI
TL;DR: This work presents a necessary and sufficient condition for the existence of a common linear copositive Lyapunov function existence for switched systems with two constituent linear time-invariant systems.
Abstract: We consider the problem of common linear copositive Lyapunov function existence for positive switched linear systems. In particular, we present a necessary and sufficient condition for the existence of such a function for switched systems with two constituent linear time-invariant systems. Several applications of this result are also given.

405 citations

Journal ArticleDOI
TL;DR: This note shows that the Hurwitz stability of the convex hull of a set of Metzler matrices is a necessary and sufficient condition for the asymptotic stability for the associated switched linear system under arbitrary switching.
Abstract: It was recently conjectured that the Hurwitz stability of the convex hull of a set of Metzler matrices is a necessary and sufficient condition for the asymptotic stability of the associated switched linear system under arbitrary switching. In this note, we show that (1) this conjecture is true for systems constructed from a pair of second-order Metzler matrices; (2) the conjecture is true for systems constructed from an arbitrary finite number of second-order Metzler matrices; and (3) the conjecture is in general false for higher order systems. The implications of our results, both for the design of switched positive linear systems, and for research directions that arise as a result of our work, are discussed toward the end of the note.

352 citations

Journal ArticleDOI
TL;DR: The results reveal an interesting characterisation of ''linear'' stability for the arbitrary switching case; namely, the existence of such a linear Lyapunov function can be related to the requirement that a number of extreme systems are Metzler and Hurwitz stable.

218 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Journal ArticleDOI
TL;DR: This paper focuses on the stability analysis for switched linear systems under arbitrary switching, and highlights necessary and sufficient conditions for asymptotic stability.
Abstract: During the past several years, there have been increasing research activities in the field of stability analysis and switching stabilization for switched systems. This paper aims to briefly survey recent results in this field. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After a brief review of the stability analysis under restricted switching and the multiple Lyapunov function theory, the switching stabilization problem is studied, and a variety of switching stabilization methods found in the literature are outlined. Then the switching stabilizability problem is investigated, that is under what condition it is possible to stabilize a switched system by properly designing switching control laws. Note that the switching stabilizability problem has been one of the most elusive problems in the switched systems literature. A necessary and sufficient condition for asymptotic stabilizability of switched linear systems is described here.

2,470 citations

01 Nov 1981
TL;DR: In this paper, the authors studied the effect of local derivatives on the detection of intensity edges in images, where the local difference of intensities is computed for each pixel in the image.
Abstract: Most of the signal processing that we will study in this course involves local operations on a signal, namely transforming the signal by applying linear combinations of values in the neighborhood of each sample point. You are familiar with such operations from Calculus, namely, taking derivatives and you are also familiar with this from optics namely blurring a signal. We will be looking at sampled signals only. Let's start with a few basic examples. Local difference Suppose we have a 1D image and we take the local difference of intensities, DI(x) = 1 2 (I(x + 1) − I(x − 1)) which give a discrete approximation to a partial derivative. (We compute this for each x in the image.) What is the effect of such a transformation? One key idea is that such a derivative would be useful for marking positions where the intensity changes. Such a change is called an edge. It is important to detect edges in images because they often mark locations at which object properties change. These can include changes in illumination along a surface due to a shadow boundary, or a material (pigment) change, or a change in depth as when one object ends and another begins. The computational problem of finding intensity edges in images is called edge detection. We could look for positions at which DI(x) has a large negative or positive value. Large positive values indicate an edge that goes from low to high intensity, and large negative values indicate an edge that goes from high to low intensity. Example Suppose the image consists of a single (slightly sloped) edge:

1,829 citations